# A.P. Physics Equations

### 96 terms by francoise_karl

#### Study  only

Flashcards Flashcards

Scatter Scatter

Scatter Scatter

## Create a new folder

### v=v₀+at

Kinematics: final velocity (v)

### x=v₀t+½at²

Kinematics: displacement (x)

### v²=v₀²+2ax

Kinematics: velocity² (v²)

### Range=v₀²sin2θ/g

Kinematics: Range equation-must start and end at same height

### F=ma

Dynamics: Newton's 2nd Law (F)

### W=mg

Dynamics: Weight (W)

### F=µFn

Dynamics: Frictional Force (F)

### F=k∆x

Dynamics: Hooke's Law/Spring Force (F)

### W=Fdcosθ

Work and Energy: Work (W)

### KE=½mv²

Work and Energy: Kinetic Energy (KE)

### PE=mgh

Work and Energy: Potential Energy (PE)

### PE=½kx²

Work and Energy: Potential Energy Spring (PE)

### W=∆KE

Work-Energy Theorum (W)

### Power=W/t

Work and Energy: Power

### p=mv

Work and Energy: Momentum (p)

### ∆p=F∆t

Work and Energy: Impulse (∆p)

### a=v²/r

Circular motion: centripital acceleration (a)

### T=1/f

Circular motion: Period (relating to frequency) (T)

### v=2πr/t

Circular motion: velocity (v)

### F=mv²/r

Circular motion: centripital force (F)

### tanθ=v²/rg

Circular motion: relationship for banked curve

### F=Gm₁m₂/r²

Circular motion: law of universal gravitation (F)

### v=√A√k/m

Circular motion: maximum velocity spring (v)

### v=±vmax√1−x²/A²

Circular motion: velocity at any position spring (v)

### T=2π√m/k

Circular motion: Period spring (T)

### x=Acos(2πft)

Circular motion: position spring (x)

### F=−mgx/L

Circular motion: force pendulum (F)

### T=2π√L/g

Circular motion: Period of pendulum when θ<15° (T)

### T=rF

Circular motion: Torque (T)

### PV=nRT

Thermodynamics: Ideal Gas Law

### KE=3/2RT

Thermodynamics: Kinetic Energy for one mole of gas (KE)

### ∆u=Q+W

Thermodynamics: change in internal energy (∆u)

### u=3/2nRT

Thermodynamics: internal energy (u)

### W=−P∆V

Thermodynamics: Work for Isobaric process (W)

### W=−Q

Thermodynamics: Work for Isothermal process (W)

### W=0

Thermodynamics: Work for Isovolumetric process (W)

### W=∆u

Thermodynamics: Work for Adiabatic Process (W)

### e=Qh−Qc/Qh

Thermodynamics: Efficiency (e)

### Q=mC∆T

Thermodynamics: heat transfer (Q)

### H=kA∆T/L

Thermodynamics: Rate of heat transfer (H)

### ∆L=αL₀∆T

Thermodynamics: Thermal expansion in liquids and solids (∆L)

### ∆V=βV₀∆T

Thermodynamics: Volume Expansion (∆V)

### c=λf

Atomic and Nuclear: relationship b/w wavelenght and frequency

### E=hf

Atomic and Nuclear: Planck's equation, relationship between energy and frequency (E)

### W₀=hf−KEmax

Atomic and nuclear: Work function (W₀)

### p=h/λ

Atomic and nuclear: momentum of light (p)

### λ=h/mv

Atomic and nuclear: deBroglie wavelength (λ)

### P=F/A

Fluid mechanics: Pressure (P)

### P=ρgh

Fluid mechanics: Hydrostatic pressure (P)

### F=ρVg

Fluid mechanics: Buoyant force (F)

### f=Av

Fluid mechanics: flow rate (f)

### A₁v₁=A₂v₂

Fluid mechanics: Continuity equation flow rate

### ρ+ρgy+½ρv²

Fluid mechanics: Bernoulli's equation (constant)

### v=√2gh

Fluid mechanics: rate that liquid flows out of hole (v)

### n₁sinθ₁=n₂sinθ₂

Waves and optics: Snell's law refraction

### n=c/v

Waves and optics: index of refraction (n)

### 1/d₀+1/d₁=1/f

waves and optics: thin lens equation

### m=h₁/h₀=−d₁/d₀

waves and optics: magnification

### f=½r

waves and optics: focal length for concave mirror (f)

### dsinθ=mλ

waves and optics: constructive interference

### dsinθ=(m+½)λ

waves and optics: deconsrtuctive interference

### x=mλL/d

waves and optics: distance on screen in double-slit experiment (x)

### N=1/d

waves and optics: diffraction grating (N)

### 2nt=(m+½)λ

waves and optics: Thin films constructive 1 phase reversal or deconstructive 0 or 2 phase reversal

### 2nt=mλ

waves and optics: thin films constructive 0 or 2 phase reversal or deconstuctive 1 phase reversal

### v=331+.6T

waves and optics: speed of sound (v)

### f=nv/2L

waves and optics: string instrument frequency (f) n=1,2,3...

### v=√F/m/L

waves and optics: string instrument velocity (v)

### f=nv/2L

waves and optics: wind instrument open tube frequency (f) n=1,2,3...

### f=nv/4L

waves and optics: wind instrument closed tube frequency (f) n=1,3,5...

### F=kq₁q₂/r²

electricity: electric force (F)

### E=kq/r²

electricity: electric field (E)

### ∆PE=−qEd

electricity: change in potential energy for UNIFORM electric field (∆PE)

### ∆V=∆PE/q

electricity: electric potential difference (∆V)

### ∆V=−Ed

electricity: electric potential difference for UNIFORM electric field (∆V)

### V=kq/r

electricity: electric potential for POINT CHARGE (V)

### Q=CV

electricity: charge stored in capacitor (Q)

### C=ε₀A/d

electricity: capitance (C)

### ∆PE=½QV

electricity: change in potential energy in capacitor (∆PE)

### V=IR

electricity: Ohm's law (V)

### R=ρL/A

electricity: resistance of material (R)

### P=IV

electricity: Power (P)

### R=∑R₁

electicity: resistance in series (R)

### 1/R=∑1/R₁

electricity: resistance in parallel (R)

### I=∑I₁

electricity: current in parallel (I)

### V=ε−IR

electricity: terminal voltage (V)

### C=∑C₁

electricity: capacitors in parallel (C)

### 1/C=∑1/C₁

electricity: capactitors in series (C)

### F=qvBsinθ

magnetism: magnetic force (F)

### v=E/B

magnetism: velocity for particle in straight line in electric and magnetic field (v)

### B=µ₀I/2πr

magnetism: magnetic field (B)

### F=IlBsinθ

magnetism: magnetic force due to current (F)

### F=µ₀I₁I₂l₂/2πr

magnetism: force on one wire due to another (F)

### ∅=BAcosθ

magnetism: magnetic flux (∅)

### ε=−N∆∅/∆t

magnetism: emf (ε) *with flux in equation

### ε=Blv

magnetism: emf (ε)

Example: