NAME: ________________________

# ← Calculus: Ch. 1Test

### Question Limit

of 44 available terms

### 5 Matching Questions

1. Theorem of perpendicular lines
2. How to solve an inequality
4. Symmetry with respect to the origin
5. Sine function and cosine function
1. a Let l_1 and l_2 be nonvertical lines with slopes m_1 and m_2. Then l_1 and l_2 are perpendicular if and only if (m_1)(m_2) = -1.
2. b sin θ = y/r and cos θ = x/r
3. c 1) Algebraically make one side equal to zero.
2) Express the other side as a product.
3) Find the zeroes of factors of the product.
4) Draw a diagram that shows the signs of the factors of the product from -∞ to ∞.
5) Deduce the values of x for which the product satisfies the inequality.
4. d If a < b and c < d, then a + c < b + d.
5. e (-x, -y) is on the graph whenever (x, y) is

### 5 Multiple Choice Questions

1. |PQ| = sqrt((x_2 - x_1)² + (y_2 - y_1)²)
2. m = (y_2 - y_1) / (x_2 - x_1)
3. One of these three:
(a, b) <-> all x such that a < x < b
(a, ∞) <-> all x such that a < x
(-∞, a) <-> all x such that x < a
4. Replace f (x) by f (x + c)
5. A function consists of a domain and a rule. The domain is a set of real numbers. The rule assigns to each number in the domain one and only one number.

### 5 True/False Questions

1. Symmetry with respect to the x axis(x, -y) is on the graph whenever (x, y) is

2. Trichotomy of inequalitiesIf a < b and b < c, then a < c.

3. Relation between square root and absolute value|x| = sqrt(x²)

4. Secant functioncsc x = 1/ sin x for x /= nπ, n any integer

5. Approximate height of a falling object in metersh (t) = -4.9t² + (v_0)(t) + h_0