Advertisement Upgrade to remove ads

Linear Motion, V, Vo, a, t

V=V₀+at

Linear Motion, Δx, Vo, a, t

Δx=V₀t+1/2 a

Linear Motion, V, Vo, a, x

V²=V₀²+2aΔx

Linear Motion, Δx, avg. V, t

Δx=avgVt=t(V₀+V)/2

Force

∑F=ma, in newtons 1 N=1 kgm/s²

Weight

W=m*g, where g= 9.8 m/s²

Gravity

F=Gm₁m₂/r², where G is the gravitational constant

Gravitational Constant

6.67E-11 N*m²/kg²

Torque

τ=rFsinθ, where θ=angle between r and F

Kinetic friction

f=μN, where N=normal force and μ=friction coefficient

Centripetal Force

F=ma=mv²/r

Work

W=Fdcosθ, measured in Joules, 1 J=1 N*m

Power

P=W/t, measured in Watts, 1 watt=1 J/s

Kinetic Energy

KE=mv²/2, measured in Joules

Potential Energy

U=mgh, measured in joules

Momentum

p=mv

Impulse

J=F*t=Δp

Specific Heat

Q=mcΔT; only where there is no phase change

Heat of Transformation

Q=mL, where L is the heat required to change phase of 1 kg of substance

Pressure

P=F/A, in Pascals, 1 Pa=1 N/m²

Thermodynamic Work

W=PΔV

First Law of Thermodynamics

ΔU=Q-W, where ΔU is change in internal energy.

Density

ρ=m/v

Absolute Pressure of a Fluid

P=P₀+ρgh, where P₀ is pressure at the surface, h is depth of the point measured.

Pascal's Principle

ΔP=F₁/A₁=F₂/A₂
V=A₁d₁=A₂d₂
W=F₁d₁=F₂d₂

Continuity Equation

v₁A₁=v₂A₂

Bernoulli's Equation

P₁+ρv₁²/2+ρgy₁=P₂+ρv₂²/2+ρgy₂, where P=absolute pressure, ρ=density, and y=height relative to reference height

Fundamental Unit of Charge

e=1.60E-19 C

Coulomb's Law

F=K q₁*q₂/r², magnitude of force between two charges

Electric Potential Energy

U=kqQ/r

Electric Field

F=q₀E, where Force is acted upon charged particle in E, electric field

Electric Potential

V=W/q₀, W is work needed to move test charge

Magnetic Force

F=qvBsinθ, on moving charge q at angle θ relative to magnetic field B

right-hand rule

hand on plane with forefingers pointing B and thumb pointing qv, F will come out of palm

Magnetic Centripetal Force

F=qvB=mv²/r, for when qv is perpendicular to B

Current

i=Δq/Δt, in Ampere, 1 A=1C/s

Force for Current-carrying Wire

F=iLBsinθ, for wire length L carrying i at angle θ to B

Ohm's Law

V=iR, where R is resistance

Power dissipation by Resistor

P=iV=i²R=V²/R

Resistors in Series

R=R₁+R₂+R₃+...

Resistors in Parallel

1/R=1/R₁+1/R₂+1/R₃+... V=V₁=V₂=...

Capacitance

C=Q/V, in Farads, 1 F=1C/V

Capacitors in Parallel

C=C₁+C₂+C₃+...

Capacitors in Series

1/C=1/C₁+1/C₂+...

Angular Frequency

ω=√(k/m)=√(g/L); k/m for spring, g/L for pendulum

Simple Harmonic Motion: acceleration

a=-ω²x

Simple Harmonic Motion: Linear Restoring Force

F=-kx

Speed of Wave

v=fλ, where λ=wavelength

Wave variable relationships

v=fλ=ω/k=λ/T; k=2π/λ, ω=2πf=2π/T

Sound Intensity

P=IA, where P=power, I=intensity, A=surface area

Sound Level

β=10log(I/I₀) where I₀=1E-12 W/m²

Beat Frequency

f=|f₁-f₂|

Doppler Effect

f=f₀(v±Vd)/(v±Vs), Vd is speed of detector, Vs is speed of source. + top - bottom for moving towards, - top + bottom for moving away

Speed of Light

c=fλ, c=3.00E8

Magnification

m=-i/o, i is distance of image from mirror, o distance object from mirror

Snell's Law

n=c/v, n₁sinθ₁=n₂sinθ₂, where n is index of refraction

Exponential Decay

n=n₀e^(-λt), λ is decay constant

Decay Constant

λ=ln2/T, where T is half life

Photon Energy

E=hf, where h=6.626E-34 (Planck's constant)

Please allow access to your computer’s microphone to use Voice Recording.

Having trouble? Click here for help.

We can’t access your microphone!

Click the icon above to update your browser permissions above and try again

Example:

Reload the page to try again!

Reload

Press Cmd-0 to reset your zoom

Press Ctrl-0 to reset your zoom

It looks like your browser might be zoomed in or out. Your browser needs to be zoomed to a normal size to record audio.

Please upgrade Flash or install Chrome
to use Voice Recording.

For more help, see our troubleshooting page.

Your microphone is muted

For help fixing this issue, see this FAQ.

Star this term

You can study starred terms together

NEW! Voice Recording

Create Set