Ch. 40 Nursing Test 4

203 terms by den3ise 

Create a new folder

Advertisement Upgrade to remove ads

how much oxygen is in the air we breathe

21%

cardiopulmonary system delivers what

oxygen to tissues and removes carbon dioxide. plays important part in acid base balance in our bodies

inhalation

muscles working. diaphram contracts (descends) causes negative pleural pressure

exhalation

positive pressure in lungs. lets air go out

alveoli

approximately 30 million alveoli. looks like grapes. covered with veins, arteries, capillaries. vascular network. surfactant is the chemical in them to keep them from collapsing

oxygen (O2) in (how lungs function)

-oxygen inhaled from environment
-upper airway (mouth)
-trachea, bronchi
-bronchioles, alveoli
-pulmonary capillaries
-pulmonary vein
-left heart -> body tissues

carbon dioxide (CO2) out (how lungs function)

-body tissues -> right heart
-right ventricle
-pulmonary artery
-pulmonary arterioles to capillaries
-alveoli
-exhaled to environment

oxygenated blood (how heart functions)

is O2 rich.
-from lungs
-left atrium
-mitral valve
-left ventricle
-aortic valve
-aortic arch
-arteries, arterioles
-capillaries -> tissues

deoxygenated blood (how heart functions)

CO2 rich.
-from tissues
-capillaries
-venules, veins
-vena cavas
-right atrium
-tricuspid valve
-right ventricle
-to lungs

cardiac output

the amount of blood ejected from the left ventricle each minute. average is 6 liters per minute. to calculate: stroke volume x heartrate. Ex- stroke volume is 75 ml, heart rate is 72 bpm, cardiac output is 75 x 72 = 5400 ml which equals 5.4 liters.

stroke volume

amount of blood ejected with each heartbeat. average is 75 ml.

perfusion

circulation of blood supplying tissues with O2 nutrients

basic components of the cardiovascular system

-adequate pump (heart)
-adequate transport system (blood vessels)
-adequate supply of circulation (of blood)

how long does it take to recirculate the blood in your body

1 minute

desired pump characteristics

-adequate stroke volume
-competent valves (good valves that don't leak)
-adequate heart rate: high enough to supply nutrients but not to high
-myocardial (heart muscle) blood flow
-effective electrical conduction system
-adequate chemical and neural controls: neural controls is the sympathetic and parasympathetic nervous system

right side of heart

has deoxyginated blood that goes to the lungs

left side of heart

has oxygenated blood that goes to the body

arteries

carry oxygenated blood

veins

carry deoxygenated blood

pulmonary arteries

carry deoxygenated blood from heart

pulmonary veins

carry oxygenated blood to heart

vena cava

major vessel that brings blood back to the heart

coronary veins

drain directly into left side of heart

adequate blood vessel system

-patent: no obstructions, no clots, no plaque in arteries, no narrowing
-various vessel types: each has own structure and function
-elastic, able to constrict and dilate
-able to respond to chemical and neural stimulation

adequate blood and blood components

-adequate volume: maintain circulation, maintain blood pressure
-hemoglobin to carry oxygen: hemoglobin is oxygen carrier within blood stream to body
-plasma to maintain volume: plasma is noncellular portion of blood
-clotting factors to retain viscosity

carbon dioxide

is also carried by hemoglobin to get rid of it

ventilation

process of moving air and gases in and out of lungs (inspiration and expiration). breathing.

respiration

the molecular exchange of O2 and CO2 within tissue of the body. Gas exchange in the body. (tissue level)

diffusion

movement of particles (gases) from area of higher concentration to lower across alveolar and capillary membranes. red blood cells in hemoglobin carry oxygen

actual work of respiration/gas exchange is done at

the alveolar level in the lungs. at the capillary cell level in the body

sign of distress

clavical muscles contract (accessory muscles)

medulla oblongata

respiratory system

diaphragm

if not doing a good job it will use accessory muscles

needed for ventilation and gas exchange

-adequate muscles of respiration
-adequate chemical and neural controls
-adequate pulmonary circulation (to ventilate and exchange gases)
-adequate negative pressure in the pleural space (pressure lower than atmosphere)
-adequate airway
-adequate lung volume and lung compliance
-adequate alveoli

basic components needed for ventilation and gas exchange

-adequate nervous system
-adequate musculoskeletal system
-adequate pulmonary system

ischemia

is reversable. insufficient blood supply to meet bodies demands

angina

(pectoris). chest pain from ischemia

infarction

not reversable. cell (tissue) death from insufficient blood supply (ischemia)

hypoxia

can lead to cardiac arythmias or death of not treated. inadequate tissue oxygenation due to respiratory or cardiovascular. signs and symptoms: apprehension, restlessness, decreased level of consciousness, decreased pulse and respirations. cyanosis is a late sign

hypoxemia

-mia refers to blood. inadequate oxygen in blood. usually a respiratory issue. measure-O2 saturation.

pump

leaking mitral valve, cardiac arythmia, heart failure

blood

severe enemia, hemorrhage

blood vessels

hypertension, arteriosclerosis

airway

pneumonia

negative pleural pressure

open chest injury

lung volume

shallow respirations

chemical/neural control

brain injury

pulmonary circulation

pulmonary embolism

alveoli

lung disease affecting surfactant

hypoventilation

inadequate air intake and alveolar gas exchange to meet metabolic needs causing the body to retain CO2

atelectasis

airless/collapsed lung or part of lung resulting from collapsed alveoli. common in obstructive lung disease

hypercapnia

elevated level of CO2 in blood. can lead to acidosis

pleural/pericardial effusion

accumulation of fluid around heart or lungs (in pleural or pericardial space)

anemia and low hemoglobin

perfusion

spinal cord injury trouble with oxygenation

weak or ineffective muscles of respiration

could you have hypoxemia without having hypoxia?

no. if adequate oxygen is not diffused into blood stream there won't be enough to perfuse the tissues

could you have hypoxia without hypoxemia?

yes. the lungs could be exchanging gas well but the circulatory system might not be perfussing the tissues

which would be more serious: ischemia or infarction

infarction because it is irreversable. ischemia is reversable

which patient would be more likely to have hypercapnia? one hyperventilating or hypoventilating?

hypoventilating. you would be retaining CO2. with hypercapnia you have elevated CO2 levels in blood

CHF

congestive heart failure (retaining all the fluid, starts in right side of heart)

AMI/MI

acute myocardial infarction (death of a muscle, heart attack)

PE

pulmonary embolism (blood clot)

USA

unstable angina (chest pain)

CAD

coronary artery disease

CVA

cerebral vascular accident (stroke)

PVD

peripheral vascular disease (not getting enough profussion to the extremities)

HTN

hypertension (high blood pressure)

TB

tuberculosis

CP

chest pain

SOA

shortness of air (breath)

NSR

normal sinus rhythm (normal heart beat)

consolidation

exudate in the lungs

pneumonia (respiratory disorder)

inflammation of lungs. usually due to infection with pathogenic organisms

bronchitis (respiratory disorder)

inflammation of bronchial airways by infection or irritation. characterized by airway edema, coughing, and sputum production

asthma (respiratory disorder)

increased airway responsiveness to stimuli resulting in airway narrowing and inflammation

lung cancer (respiratory disorder)

malignant growth causing lung obstruction

COPD chronic obstructive pulmonary disease

progressive disease with increased resistance to air movement and loss of lung compliance resulting in chronic hypoxemia. emphysema is a common type of COPD

angina (pectoris): common cardiovascular disorder

USA: unstable angina (chest pain). pain from myocardial ischemia. sharp, burning, aching, tingling pain. < 15 min. usually relieved by rest or coronary vasodilator (nitroglycerine)

MI (myocardial infarction): common cardiovascular disorder

death of a muscle, heart attack. pain with irreversible heart damage. crushing, squeezing, stabbing pain. > 30 min. not relieved by rest or coronary vasodilator (nitroglycerine)

heart failure: common cardiovascular disorder

CHF (congestive heart failure). failure of heart to pump adequately -> decreased cardiac output and can back up into lungs and systemic circulation

CAD (coronary artery disease): common cardiovascular disorder

narrowing of coronary arteries, usually due to atherosclerosis

HTN (hypertension): common cardiovascular disorder

High blood pressure. often silent without signs and symptoms. headache, nausea, blurred vision, kidney damage, high risk for stroke. diagnosis of HTN-blood pressure

A person who starts smoking in adolescence and continues to smoke into middle age

Has an increased risk for cardiopulmonary disease and lung cancer. The risk of lung cancer is 10 times greater for a person who smokes than for a nonsmoker. Cigarette smoking worsens peripheral vascular and coronary artery disease. Inhaled nicotine causes vasoconstriction of peripheral and coronary blood vessels, increasing blood pressure and decreasing blood flow to peripheral vessels.

Carbon monoxide (CO) is a toxic inhalant that decreases the oxygen-carrying capacity of blood by:

Forming a strong bond with hemoglobin. CO is the most common toxic inhalant and decreases the oxygen-carrying capacity of blood. In CO toxicity, hemoglobin strongly binds with carbon monoxide, creating a functional anemia. Because of the strength of the bond, carbon monoxide does not easily dissociate from hemoglobin, which makes hemoglobin unavailable for oxygen transport.

Conditions such as shock and severe dehydration resulting from extracellular fluid loss cause:

Hypovolemia. Conditions such as shock and severe dehydration cause extracellular fluid loss and reduced circulating blood volume (hypovolemia).

Fever increases the tissues' need for oxygen, and as a result:

Carbon dioxide production increases. Fever increases the tissues' need for oxygen, and as a result, carbon dioxide production increases. When fever persists, the metabolic rate remains high and the body begins to break down protein stores, which results in muscle wasting and decreased muscle mass.

Left-sided heart failure is characterized by:

Decreased functioning of the left ventricle. Left-sided heart failure is an abnormal condition characterized by decreased functioning of the left ventricle. If left ventricular failure is significant, the amount of blood ejected from the left ventricle drops greatly, which results in decreased cardiac output.

Cyanosis, the blue discoloration of the skin and mucous membranes caused by the presence of desaturated hemoglobin in capillaries, is:

A late sign of hypoxia. Cyanosis, blue discoloration of the skin and mucous membranes caused by the presence of desaturated hemoglobin in capillaries, is a late sign of hypoxia. The presence or absence of cyanosis is not a reliable measure of oxygen status.

A simple and cost-effective method for reducing the risks of stasis of pulmonary secretions and decreased chest wall expansion is:

Frequent change of position. Changing the client's position frequently is a simple and cost-effective method for reducing the risk of pneumonia associated with stasis of pulmonary secretions and decreased chest wall expansion. Oxygen humidification, chest physiotherapy, and use of antiinfectives are all helpful, but are not cost effective.

The nurse is concerned when a client's heart rate, which is normally 95 beats per minute, rises to 220 beats per minute, because a rate this high will:

Reduce coronary artery perfusion. Coronary arteries fill and perfuse the myocardium (heart muscle) during diastole. When the heart rate is elevated, more time is spent in systole and less in diastole; hence, the myocardium may not be perfused adequately. The client may be exhausted, but the primary concern is myocardial perfusion. Major organs will adjust to increased blood flow. This is usually not a problem. With a heart rate this high, metabolic rate will be increased, not decreased.

A client is admitted to the emergency department with a suspected cervical spine fracture at the C3 level. The nurse is most concerned about the client's ability to:

Breathe. Spinal cord injury at the level of C5 or above often results in damage to the phrenic nerve, which innervates the diaphragm and permits breathing. Cardiac output is not usually affected by spinal cord injury; however, cardiac output may be reduced as a result of trauma and blood loss. It is too early to be concerned with ambulation. Life-threatening problems take priority. Level of consciousness is certainly an important consideration, because this client most likely sustained a head injury. However, this is not a certainty given the data provided.

When suctioning secretions that are collecting in an endotracheal tube, the nurse does not apply suction for longer than:

15 seconds. Applying suction for too long can result in complications such as hypoxemia and cardiac dysrhythmias. Thus the nurse is always aware of the length of time that suctioning is applied to an airway. If the suctioning time is too short, the suction catheter may not remove the secretions. If the suctioning time is too long, hypoxemia and/or cardiac dysrhythmias could result.

The nurse is caring for a client with a chest tube in the right thorax. On first assessment the nurse notes that there is bubbling in the water-seal chamber. This client is scheduled to undergo a chest x-ray examination, and the transporters have arrived to take him by wheelchair to the radiology department. The nurse considers whether the chest tube should be clamped or not during the trip to the radiology department. The nurse makes the which correct decision?

Do not clamp the chest tube and disconnect it from the wall suction. A bubbling chest tube (in the water-seal portion) should never be clamped because it provides the only exit for air accumulating in the pleural space. If the tube is clamped, tension pneumothorax could occur, which could be fatal. There is no advantage to clamping the chest tube but venting the system. Clamping of the chest tube prevents communication of the chest tube with the venting system or with the wall suction. There is no such thing as "temporary suction" for a chest tube system.

A client is receiving oxygen via a nonrebreathing mask. A crucial nursing assessment the nurse performs is to be sure that:

The bag attached to the mask is inflated at all times. If the bag attached to a nonrebreathing mask is deflated, the client is at risk for breathing in large amounts of exhaled carbon dioxide. The bag should be maximally inflated at all times. Checking the straps to make sure they are not causing skin ulcers is important but not crucial. For a nonrebreathing mask 2 L/min is far too low a flow setting. The oxygen flow should be set at 10 L/min or more. Otherwise, the bag will collapse. Heating the fluid used to increase humidity is not essential.

A client with known chronic obstructive pulmonary disease (COPD) is admitted to the emergency department with multiple minor injuries following an automobile accident. To ensure adequate ventilation the nurse applies a nasal cannula providing oxygen at what rate and for what reason?

2 L/min to prevent elevating the arterial oxygen tension (PaO2), which would suppress the hypoxic drive. Clients without COPD rely on low PaO2 as a stimulus to breathe. Thus, increasing the PaO2 would stop the client from breathing. Low oxygen therapy is recommended for clients with COPD who are severely hypoxic. Options 1 and 2 give the client too much oxygen and might suppress the client's breathing. Because the client experienced only minor injuries, the client presumably is still breathing on his or her own; therefore, option 3 is incorrect because artificial ventilation is not necessary.

The nurse is caring for a client who has undergone cardiac catheterization. The client says to the nurse, "The doctor said my cardiac output was 5.5 L/min. What is normal cardiac output?" Which of the following is the nurse's best response?

"The normal cardiac output for an adult is 4 to 6 L/min." The client asked a direct question that the nurse should be able to answer. Normal cardiac output for an adult is 4 to 6 L/min. Questions regarding diagnosis and prognosis may be referred to physicians. There is no harm in answering this question. When using therapeutic communication, the nurse should never ask a client to justify his or her feelings by inquiring why a question was asked. There is no evidence that this client is upset

A client asks why smoking is a major risk factor for heart disease. In formulating a response, the nurse incorporates the understanding that nicotine:

Causes vasoconstriction. Nicotine causes vasoconstriction, which restricts blood flow to the heart and peripheral tissues and increases the risk of hypertension and subsequently heart disease as a complicating factor. Nicotine does not cause vasodilation. Nicotine decreases the oxygen-carrying capacity of hemoglobin. Nicotine decreases the level of high-density lipoproteins and elevates the level of harmful low-density lipoproteins, which leads to atherosclerosis.

Symptoms associated with anemia include which of the following? (Select all that apply.)

Increased breathlessness and Decreased activity tolerance. Clients with anemia have fatigue, decreased activity tolerance, and increased breathlessness, as well as pallor (especially seen in the conjunctiva of the eye) and an increased heart rate.

Which of the following assessment data indicate that the client's airway needs suctioning? (Select all that apply.)

Drooling, Decreased coughing ability, and Abnormal lung sounds only in left lower lobe. Suctioning is necessary when the client is unable to clear respiratory secretions from the airways. Signs that a client's airway needs suctioning include a change in respiratory rate or adventitious sounds, nasal secretions, gurgling, drooling, restlessness, gastric secretions or vomitus in the mouth, and coughing without clearance of secretions from the airway.

The nurse suspects left-sided heart failure in a newly admitted client when the nurse notes which of the following symptoms? (Select all that apply.)

Bilateral crackles in the lungs and Shortness of breath, especially at night. Left-sided heart failure results in ineffective ejection of blood from the left ventricle. This causes a backup of blood into the lungs. Thus, symptoms of left-sided heart failure are usually related to the lungs.

A client with chronic obstructive pulmonary disease (COPD) is experiencing dyspnea and anxiety. The nurse helps the client to breathe better by doing which of the following? (Select all that apply.)

Instructing the client to perform pursed-lip breathing and Elevating the head of the bed to semi-Fowler's or Fowler's position. Elevating the head of the bed to Fowler's position (45-degree angle) or semi-Fowler's position (30- to 45-degree angle) causes the diaphragm to lower from gravity and thus increases the space for lung expansion. Pursed-lip breathing prolongs exhalation and maintains the alveoli open longer, thus extending the period of oxygen and carbon dioxide exchange. Too high an elevation of the head of the bed could force the diaphragm into the thorax and reduce lung expansion. Fluids could help liquify the pulmonary secretions in the future, but right now the client needs more acute care. Guided imagery may help in the future, but now is not the time to implement this intervention.

this primary muscle is needed for ventilation and gas exchange

diaphragm

acessory muscles

sternocleidomastoid, scaleni, and intercostals

what provides the drive for respirations

CO2 (also O2 and H)

what provides voluntary control

cerebral cortex

what regulates rate and depth

medulla

what is the rhythm

automatic / involuntary

gases move in and out of lungs through

pressure change: low pressure in lungs allows air to enter

what keeps the alveoli from collapsing

surfactant. adequate # for adequate surface area

untreated HTN (hypertension) leads to an increased chance of

CVAs (cerebral vascular accident - stroke)

physiological factors impacting oxygenation

-damaged/diseased cardiopulmonary structures
-decreased O2 carrying capacity
-hypovolemia
-increased metabolic rate (causes: fever, tissue healing, pregnancy, obesity, exercise)
-conditions affecting thoracic (chest wall) movement: will impact respiration and ventilation. COPD, open heart surgery, multiple sclerosis, aging

effects of aging

-decreased lung compliance: lung can't expand, move, to take in air
-decreased alveolar area: alveoli shrink
-decreased airway clearance
-decreased cough reflex: can't clear airway well
-decreased immune functioning: increased risk of pulmonary infections. TB skin testing (antigen/antibody response)
-thickening of heart valves/walls
-conduction system ages: greater numbers of elderly with cardiac arrythmias
-calcification of vessels
-vessels less elastic: don't respond as well

negative environmental factors

-air pollution
-environmental allergens
-occupational pollutants: coal dust, asbestos, fungi, chemicals
-high altitudes (over 10,000 feet): air is thinner and has less oxygen. RBC count could be elevated

what is a snack that promotes cardiovascular health

fruit and low fat yogurt

Nursing Oxygenation Assessment: History

risk factors-medical history-smoking-medications-pain-fatigue-dyspnea (difficulty breathing)-cough-constipation

Nursing Oxygenation Assessment: Inspect

LOC-skin color (cyanosis)-respirations & thorax (barrel chest shape or use of accessory muscles)-sputum-edema-clubbing-neck vein distention-urine output (kidneys will slow down without oxygen)

Nursing Oxygenation Assessment: Palpate & Grade

pulses-pitting edema-abdominal distention

Nursing Oxygenation Assessment: Auscultate

apical pulse and heart sounds-lungs (adventitious lung sounds)-blood pressure-bowel sounds

dependent edema

in hands, feet, ankles, related to cardiovascular system

dyspnea means

bad breathing. dys=bad. pnea=breathing

dyspnea

-subjective sensation of difficult or uncomfortable breathing
-can have respiratory, cardiovascular, neuromuscular, or hematological origin
-often used to describe SOA (shortness of air)
-can be rated as with pain and fatigue
-can only occur with exertion (when at rest they are fine)

bradypnea

brady=low. pnea=breathing. RR < 10. (RR=rate of respirations)

tacypnea

tacy=fast. pnea=breathing. RR > 35. (RR=rate of respirations)

apnea

no respirations

bradycardia

HR <60 (HR=heart rate)

tachycardia

HR > 100 at rest (HR=heart rate)

respiratory distress

showing signs having difficulty breathing

orthopnea

labored breathing when in a flat position but improves when upright

orthostatic hypotension

blood pressure falls in erect position

respiratory distress

-dyspnea
-use of accessory muscles
-retractions
-nasal flaring (sign of air hunger)
-rate alterations (significant ones)
-stridor (harsh, loud, noisy sound on inspiration, in upper airway)
-pursed lip breathing
-leaning forward and mouth breathing
-interrupt talking to breathe (at rest). ex-asthma patients sometimes

negative lifestyle and environmental factors

-smoking
-pack years = packs per day x years smoked
-obesity
-malnutrition (anemia, muscle waisting, decreased immune functioning)
-diets high in saturated fats, cholesterol, and sodium (could lead to cardiovascular disease)
-lack of exercise (strengthen cardiovascular system)
-substance abuse
-chronic stress and anxiety

sputum

check the consistency, amount, and color

green/yellow, purulent sputum

pusey, associated with infection. ex-pneumonia

blood streaked sputum

airway irritation, ruptured capillaries in throat

pink, watery, frothy sputum

pulmonary edema

bloody (hemoptysis) sputum

trauma, TB, lung cancer

rusty (old blood) sputum

certain types of pneumonia

thick, tenacious sputum

dehydration, COPD

allergies

watery, clear runny nose, can impact oxygenation

why would you want to assess bowel sounds, abdominal distention, and bowel movement status in patients with an oxygenation problem

-bowel sounds-with major hypoxemia, non vital body systems will slow down or stop.
-abdominal distention-mouth breathing often occurs with significant dyspnea: swallowed air leads to distention. a lot of distention leads to decreased lung expansion
-bowl movement-constipation leads to increased cardiac strain during defecation

when a nurse asks a client how many pillows they use at night she is assessing what

degree of orthopnea

charting thoughts-a client with asthma c/o SOA and labored breathing. what else should be included in the charting note?

-vital statistics with O2 sat
-any specific signs of respiratory distress (identify them)
-lung sounds (abnormal sounds/inflation)
-mucus membranes, skin color
-coughing, sputum

what are diagnostic tests used for

to identify oxygenation dysfunction

what 3 things tell you something about the oxygen carrying capacity of the blood

RBC, Hgb, Hct

normal RBC

4.2 - 6.1 x 10

normal Hgb

12-18 g/dl

normal Hct

37-52 %

normal WBC

5,000-10,000 / mm3

cardiac enzymes (creatine, kinase, troponins)

can be elevated when patient has a myocardial infarction

See More

Please allow access to your computer’s microphone to use Voice Recording.

Having trouble? Click here for help.

We can’t access your microphone!

Click the icon above to update your browser permissions above and try again

Example:

Reload the page to try again!

Reload

Press Cmd-0 to reset your zoom

Press Ctrl-0 to reset your zoom

It looks like your browser might be zoomed in or out. Your browser needs to be zoomed to a normal size to record audio.

Please upgrade Flash or install Chrome
to use Voice Recording.

For more help, see our troubleshooting page.

Your microphone is muted

For help fixing this issue, see this FAQ.

Star this term

You can study starred terms together

NEW! Voice Recording

Create Set