Ventilation Chapter 2 review questions

21 terms by jimenez1816

Create a new folder

Advertisement Upgrade to remove ads

These are the review questions that start on page 122 in Des Jardins

The average compliance of the lungs and chest wall combined is

0.1 L/cm H2O

Normally, the airway resistance in the tracheobronchial tree is about

0.5-1.5 cm H2O / L / sec

In the normal individual in the upright position

** the negative intrapleural pressure is greater (ie., more negative) in the upper lung regions
**Ventilation is more effective in the lower lung regions
**the intrapleural pressure is always below atmospheric pressure during a normal ventilatory cycle

When lung compliance decreases, the patient commonly as

*an increased ventilatory rate and *a decreased tidal volume

When arranged for flow (V), Poiseuille's law states that V is

*directly proportional to P and *inversely proportional to n

During a normal exhalation, the

*intra-alveloar pressure is greater than the atmospheric pressure and *intrapleural pressure is less than the atmospheric pressure

At rest, the normal intrapleural pressure change during quiet breathing is about

2-4 mm Hg

Normally, an individual's tidal volume is about

3-4 mL/lb

A rapid and shallow ventilatory pattern is called

tachypnea

Assuming that pressure remains constant, if the radius of a bronchial airway through which gas flows at a rate of 400 L/min is reduced to one-half of its original size, the flow through the bronchial airway would change to

25 L/min

The difference between the alveolar pressure and the pleural pressure is called the

transpulmonary pressure

According to Laplace's law, if a bubble with a radius of 4 cm and a distending pressure of 10cm H2O is reduced to a radius of 2 cm, the new distending pressure of the bubble will be

20 cm H2O

If alveolar unit A has one-half the compliance of alveolar unit B, then the

*volume in unit B is two times greater than volume in unit A and *time constant of unit B is twice as long as that of unit A

If a patient weighs 175 pounds and has a tidal volume of 550mL and a respiratory rate of 17 breaths/min, what is the patient's minute alveolar ventilation?

6375 mL

Part I: If a patient generates a negative intrapleural pressure change of - 8cm H2O during inspiration, and the lungs accept a new volume of 630 mL, what is the compliance of the lungs?

79 mL/cm H2O

Part II: If the same patient, 6 hours later, generates an intrapleural pressure of -12 cm H2O during inspiration, and the lungs accept a new volume of 850 mL, what is the compliance of the lungs?

70 mL/cm H2O

If a patient produces a flow rate of 5 L/sec during a forced exhalation by generating a transairway pressure of 20 cm H2O, what is the patient's Raw?

4 cm H2O / L / sec

As Raw increases, the patient commonly manifests

*a decreased ventilatory rate and * an increased tidal volume

If the radius of a bronchial airway, which has a driving pressure of 2 mm Hg, is reduced by 26 percent of its original size, what will be the new driving pressure required to maintain the same gas flow through the bronchial airway?

4mm Hg

In the healthy lung, when the alveolus decreases in size during a normal exhalation, the

*surface tension decreases and *surfactant to alveolar surface area increases

At end-expiration, Pta is:

0 mm Hg

Please allow access to your computer’s microphone to use Voice Recording.

Having trouble? Click here for help.

We can’t access your microphone!

Click the icon above to update your browser permissions above and try again

Example:

Reload the page to try again!

Reload

Press Cmd-0 to reset your zoom

Press Ctrl-0 to reset your zoom

It looks like your browser might be zoomed in or out. Your browser needs to be zoomed to a normal size to record audio.

Please upgrade Flash or install Chrome
to use Voice Recording.

For more help, see our troubleshooting page.

Your microphone is muted

For help fixing this issue, see this FAQ.

Star this term

You can study starred terms together

NEW! Voice Recording

Create Set