# Algebra and Trigonometry

## 36 terms · √=radical ∧= exponent

### Pythagorean Theorem

a²+b²=c²

x = [-b ± √(b² - 4ac)]/2a

### Distance Formula

d = √[( x - x₁)² + (y- y₁)²]

Ax+By=C

y=mx+b

y-y₁=m(x-x₁)

ax²+bx+c=0

-A/B

C/B

C/A

m

b

-b/m

### Sine

Opposite/Hypotenuse

### Cosecant

Hypotenuse/Opposite

### Law of Sines

sin∠A/a=sin∠B/b=sin∠C/c

### Law of Cosines

c²=a²+b²-2(a)(b)(cos∠C)

y=a(x-h)²+k

x=a(y-k)²+h

(x-h)²+(y-k)²=r²

### Conics/Ellipse/Vertical

(x-h)²/b²+(y-k)²/a²=1

### Conics/Ellipse/Horizontal

(x-h)²/a²+(y-k)²/b²=1

### Conics/Hyperbola/Vertical

(y-k)²/a²-(x-h)²/b²=1

### Conics/Hyperbola/Horizontal

(x-h)²/a²-(y-k)²/b²=1

### Simple Interest

I=prt

p=principle
r=rate of interest
t=time

### Compound Interest

Y=p(1+r)∧t

p=principle
r=rate of interest
t=time

### Fermat's Little Theorem

a=any number
p=the number you are trying to prove as prime

(a∧p)-a: will be divisible by "p" if "p" is prime

### Heron's Theorem

AREA OF A TRIANGLE
s=semiperimeter a,b,c= sides of triangle
s=(a+b+c)/2
√[s(s-a)(s-b)(s-c)]

### Circumcenter

The intersections of the perpendicular bisectors of a triangle

### Incenter

The intersection of the angle bisectors of a triangle

### Orthocenter

The intersection of the altitudes of a triangle

### Centroid

The intersection of the medians of a triangle