5 Written Questions
5 Multiple Choice Questions
 Mnemonic device to help remember the trig ratios in a right triangle: sin = opp/hyp; cos = adj/hyp; tan = opp/adj
 In a triangle with shorter sides a and b and longer side c, if a^2 + b^2 < c^2, then the triangle is obtuse
 The angle formed when looking up from the horizontal
 trigonometric ratio: abbreviation cos; the cosine of an acute angle in a right triangle equals the side adjacent to the angle divided by the hypotenuse (cos A = adj/hyp)
 Ratios formed by the sides of a right triangle. Useful in finding the missing sides of a right triangle given an angle and a side. Trigonometric ratios include sine (sin), cosine (cos), and tangent (tan). Other ratios (not covered in this chapter) are: cosecant, secant, and cotangent
5 True/False Questions

tangent → trigonometric ratio: abbreviation sin; the sine of an acute angle in a right triangle equals the side opposite the angle divided by the hypotenuse (sin A = opp/hyp)

Solve a triangle → Means finding any missing angles and/or sides in a triangle. Methods to solve a right triangle include the Pythagorean theorem, triangle sum theorem (if given one acute angle in a right triangle, we can find the other by subtracting the acute angle's measure from 90), trig ratios, and inverse trig functions

Pythagorean Theorem → Three positive integers that satisfy a^2 + b^2 = c^2, that is, they could be the three side lengths of a right triangle. Primitive triples include: 3, 4, 5; 5, 12, 13, and 8, 15, 17. More triples can be formed by multiplying each member of a primitive triple by the same multiplier; for example, since 3, 4, 5 is a triple, so is 6, 8, 10.

Pythagorean Triple → In a right triangle with legs a and b and hypotenuse c, a^2 + b^2 = c^2

306090 right triangle → Special right triangle: hypotenuse = shorter side 2; longer side = shorter side sqrt(3)