Chapter 10 Formulas

Created by:

caroline-ela  on April 3, 2011

Subjects:
Log in to favorite or report as inappropriate.
Pop out
No Messages

You must log in to discuss this set.

Chapter 10 Formulas

 Distance Formula√(x-x)^2 + (y-y)^2
1/45
Preview our new flashcards mode!

Order by

Photos

Distance Formula
√(x-x)^2 + (y-y)^2
Midpoint(a+b)/2
Vertical Parabolay=a(x-h)^2 +k
Vertical Parabola Vertex(h,k)
Vertical Parabola Axis of symmetryx=h
Vertical Parabola Focus(h, k+- 1/4d)
Vertical Parabola Directrixy=k - 1/4a
Vertical Parabola Latus Rectum|1/a|
Horizontal Parabolax=a(y-k)^2 +h
Horizontal Parabola Vertex(h,k)
Horizontal Parabola Axis of Symmetryy=k
Horizontal Parabola Focus(h +- 1/4a, k)
Horizontal Parabola Directrixx=h-1/4a
Horizontal PArabola Latus Rectum|1/a|
Circle(x-h)^2 + (y-k)^2 =r^2
Vertical Ellipse(x-h)^2/b^2 + (y-k)^2/a^2 = 1
Vertical Ellipse Centerh,k
Vertical Ellipse Major Axis2a
Vertical Ellipse Minor Axis2b
Vertical Ellipse Focih, k +- c)
Horizontal Ellipse(x-h)^2/a^2 + (y-k)^2/b^2 = 1
Horizontal Ellipse Centerh,k
Horizontal Ellipse Major Axis2a
Horizontal Ellipse Minor Axis2b
Horizontal Ellipse Foci(h +- c, k)
Vertical Hyperbola(y-k)^2/a^2 - (x-h)^2/b^2 = 1
Vertical Hyperbola Centerh,k
Vertical Hyperbola Transverse Axis2a
Vertical Hyperbola Conjugate Axis2b
Vertical Hyperbola Vertices(h, k+-a)
Vertical Hyperbola Foci(h, k +- c)
Vertical Hyperbola Slope of asymptotes+- a/b
Vertical Hyperbola equations of asymptotesy-k = +- a/b (x-h)
Horizontal Hyperbola(x-h)^2/a^2 - (y-k)^2/b^2 =1
Horizontal Hyperbola Center(h,k)
Horizontal Hyperbola Transverse Axis2a
Horizontal Hyperbola Conjugate Axis2b
Horizontal Hyperbola Vertices(h +- a, k)
Horizontal Hyperbola Foci(h +- c, k)
Horizontal Hyperbola Slope of Asymptotes+- b/a
Horizontal Hyperbola Equations of Asymptotesy-k = +- b/a (x-h)
Parabola Conic Section RelationshipA or C = 0
Circle Conic Section RelationshipA+C same sign, same value
Ellipse Conic Section RelationshipA+C same sign, different value
Hyperbola Conic Section RelationshipA and C term have different signs

Flickr Creative Commons Images

Some images used in this set are licensed under the Creative Commons through Flickr.com. Click to see the original works with their full license.

This product uses the Flickr API but is not endorsed or certified by Flickr.

First Time Here?

Welcome to Quizlet, a fun, free place to study. Try these flashcards, find others to study, or make your own.

Set Champions

There are no high scores or champions for this set yet. You can sign up or log in to be the first!