## Conics Formulas

##### Created by:

kaynox  on April 6, 2009

##### Description:

All the formulas in the Key Concepts boxes in the Glencoe book.

Pop out
No Messages

# Conics Formulas

 midpoint(x₁ + x₂/2, y₁ + y₂/2)
1/27

Order by

#### Definitions

midpoint(x₁ + x₂/2, y₁ + y₂/2)
distance d = √(x₂ - x₁)² + (y₂ - y₁)²
parabola y = y = a(x - h)² + k
parabola x = x = a(y - k)² + h
parabola vertex(h,k)
parabola axis of symmetry x = h and y = k
parabola focus y(h, k + 1/4a)
parabola focus x(h + 1/4a, k)
parabola directrix y = y = k - 1/4a
parabola directrix x = x = h - 1/4a
parabola direction of opening y = up if a > 0 down if a < 0
parabola direction of opening x = right if a > 0 left if a < 0
parabola length of latus rectum absolute value of 1/a
circle (x - h)² + (y - k)² = r²
circle center(h,k)
ellipse x (x - h)²/a² + (y - k)²/b² = 1
ellipse y (y - k)²/a² + (x - h)²/b² = 1
ellipse direction of major axis x horizontal y vertical
ellipse foci x(h ± c, k)
ellipse foci y(h, k ± c)
ellipse abc c² = a² - b²
hyperbola abc c² = a² + b²
hyperbola x (x - h)²/a² - (y - k)²/b² = 1
hyperbola y (y - k)²/a² - (x - h)²/b² = 1
hyperbola direction of transverse axis x horizontal
hyperbola direction of transverse axis y vertical
hyperbola equations of asymptotes y - k = ± b/a(x - h)

### First Time Here?

Welcome to Quizlet, a fun, free place to study. Try these flashcards, find others to study, or make your own.

### Set Champions

##### Scatter Champion

51.3 secs by sarahbethshipp3