NAME: ________________________

# ← Combo with "Conceptual Physics--Chapter 8: Rotational Motion" and 3 othersTest

### Question Limit

of 77 available terms
(30 exact duplicates found)

Remove ads

### 5 Matching Questions

1. Rotational inertia (often called moment of inertia)
2. Formula for Centripetal Force
3. Stick about CG:
4. Equilibrium
5. centrifugal force
1. a Apparent outward force on a rotating or revolving body.
2. b I = 1/12 mL²
3. c The property of an object that measures its resistance to any change in its state of rotation: if at rest, the body tends to remain at rest; if rotating, it tends to remain rotating and will continue to do so unless acted upon by a external net torque.
4. d F = ma = m(v^2/r)
where m = mass, a = centripetal acceleration, v = velocity, r = radius
5. e The state of an object in which it is not acted upon by a net force or a net torque.

### 5 Multiple Choice Questions

1. ...(∑T = 0, where T stands for torque). Anything in mechanical equilibrium doesn't accelerate--neither linearly nor rotationally.
2. The linear speed tangent to a curved path, such as in circular motion.
3. Product of force & the time interval during which the force acts. Impulse produces change in momentum Ft= change(mv)
4. That which that can be change the condition of matter. Comonly defined as the ability to do work; actually only describable by examples. It is not a materail substance.
5. The average position of the mass of an object. The CM moves as if all the external forces acted at this point.

### 5 True/False Questions

1. Linear Speed (translational speed)the speed with which an object moves through an angle for every unit of time; units: RPM (revolutions per minute), rad/s, θ/s

2. Solid cylinder:The state of an object in which it is not acted upon by a net force or a net torque.

3. For the case of an object that is small compared with the radial distance to its axis of rotation, such as a tin can swinging from a long string or a planet orbiting in a circle around the Sun, the angular momentum can be expressed as the magnitude of its linear momentum, *mv*, multiplied by the radial distance, *r*. In shorthand notation:It is common to express totational rates in revolutions per minute (RPM).

4. Linear momentum = mass × velocityThe average position of the mass of an object. The CM moves as if all the external forces acted at this point.

5. workProduct of force or lever arm distance, which tends to produce rotational accelertion.

Create Set