Print test
3 Written questions
3 Multiple choice questions
 Suppose two functions f(x) and g(x) are differentiable around a and g'(x) does not equal zero, Then iff trying to find the limit as x approaches a of f(x)/g(x) and the limit of f(x) and g(x) both equal zero, or both equal infinity, then the limits of indeterminate form can be evaluated by taking the derivative of both f(x) and g(x).
 A generalization of Rolle's Theorem. If f(x) is continuous on the closed interval [a, b], differentiable on (a, b), then there exists one c on (a, b) such that f'(c) = [f(b)  f(a)] / (ba)
 If f(x) is continuous in an interval [a, b] then somewhere on the interval it will achieve every value between f(a) and f(b); if f(a) is less than or equal to M, which is less than or equal to f(b), then there exists one value c in the interval [a, b] such that f(c) = M.
2 True/False questions

Rolle's Theorem → If f(x) is continuous on the closed interval [a, b], differentiable on (a, b), and satisfies f(a) = f(b), then for some c in the interval (a, b), we have f'(c) = 0

Instantaneous Rate of Change → [f(b)  f(a)] / (ba)