33 terms

# College Algebra Definitions Chapter 2

These definitions introduce the student to the concept of function.
###### PLAY
Function
A *function* consists of three things:
1) A set called the Domain
2) A set called the Range
3) A rule which associates each element of the domain with a unique element of the range.
Function Notation
Function Generic Venn Diagram
Satisfy the Rule
The coordinates of a point (a, b) are said to *satisfy the rule* of a function f if b = f(a).
Graph of a function
The *graph of a function* is the set of all points whose coordinates satisfy the rule of the function.
Graph of a Function (Preferred)
The *graph of a function* is the set of all points of the form
(a, f(a))
where a is an element of the domain and f(a) is the corresponding range element.
Zero of a Function
A *zero of a function* f is a domain element k for which
f(k) = 0.
x-intercept
An *x-intercept* of a graph in the Cartesian Coordinate System is a point where the graph intersects the x-axis.
y-intercept
A *y-intercept* of a graph in the Cartesian Coordinate System is a point where the graph intersects the y-axis.
Zero Function
The *zero function* z is the function defined by
z(x) = 0
for all x in the domain of z.
Constant Function
A function f is called a *constant function* if its rule can be written as f(x) = k for some real number k.
Linear Function
A *linear function* is a function whose rule may be written in the form f(x) = mx + b where m and b are real numbers.
Identity Function
The *identity function* is the function I whose rule may be written in the form
I(x) = x.
Squaring Function
The *squaring function* is the quadratic function f whose rule may be written in the form f(x) = x².
Cubing Function
The *cubing function* is the function f whose rule may be written in the form
f(x) = x³.
A *quadratic function* is a function whose rule may be written in the form
f(x) = ax² + bx + c
where a, b, and c are real numbers and a is not zero.
Reciprocal Function
The *reciprocal function* is the function f whose rule may be written in the form shown above.
Square Root Function
The *square root function* is the function sqrt whose rule may be written in the form
shown above.
Absolute Value Function
The *absolute value function* is a function abs whose rule may be written in the form abs(x) = | x |.
Exponential Base e Function
The *exponential base e function* is the function exp whose rule may be written in the form exp(x) = e×
where e is the irrational number approximately equal to 2.718281828...
Logarithm Base e Function
The *logarithm base e function* is the function ln which is the inverse of the function exp.
Piecewise Defined Function
A *piecewise defined function* is a function whose rule is different for different intervals of its domain.
Increasing Function
A function f is *increasing on an interval* if, for any x₁and x₂ in the interval,
x₁< x₂ implies f(x₁) < f(x₂).
Decreasing Function
A function f is *decreasing on an interval* if, for any x₁and x₂ in the interval,
x₁< x₂ implies f(x₁) > f(x₂).
Even Function
A function f is an *even function* if,
f(x) = f(-x)
for all domain elements x
Odd Function
A function f is an *odd function* if, f(x) = -f(-x) for all domain elements x.
Sum of Functions
The *sum of two functions* f and g with the same domain is the function named (f+g) whose rule may be written as
(f+g)(x) = f(x) + g(x)
for all x in the common domain.
Difference of Functions
The *difference of two functions* f and g with the same domain is the function named (f-g) whose rule may be written as
(f-g)(x) = f(x) - g(x)
for all x in the common domain.
Product of functions
The *product of two functions* f and g with the same domain is the function named (fg) whose rule may be written as
(fg)(x) = [f(x)][g(x)]
for all x in the common domain.
One-to-One Function
A function is called a *one-to-one function* if no element of the range is the associate of more than one domain element.
Name for Composition of Two Functions
The composition of a function f with a function g is a function whose name is shown above.
Composition of Two Functions
The composition of a function f with a function g is a function whose rule may be written in the form shown above.
Inverse of a function
Let f be a function with domain A and range B. Then the inverse of the function, if it exists, is a function named f⁻¹, with domain B and range A with the property shown above.