### Dependent samples design can have problem of

rank order effects or carry over effects. Counterbalancing may reduce impact of rank order effects, but not carry over effects.

### provided scores are positively correlated between repeated measures, dependent samples design leads to

less error variance than independent samples design (because participant variables are held constant rather than allowed to vary randomly)

### For independent samples, M1 and M2 values will be uncorrelated

because, on any replication, different participants contribute to M1 and M2

### For dependent samples, M1 and M2 values will be correlated

because, on any replication, the same participants contribute to both M1 and M2

### For independent samples, correlation between scores in Condition 1 and Condition 2

should be zero (necessarily so)

### For dependent samples, correlation between scores in Condition 1 and Condition 2

should be positive.

###
eg perception expt - four conditions, A B C D

C = flashbulb, then C will mask effects of conditions that follow it.

eg order 1: A C D B - effect of C will carry over to condition D (and maybe B)

order 2: C B A D - effect of C will carry over to condition B (and maybe A , D)

not solved by counter-balancing

### Counterbalancing

e.g. two conditions A and B

half participants do A then B; half participants do B then A

e.g. three conditions, A B C

one third do ABC; one third do BCA; one third do CAB

random permutations

each participant does a random order of conditions

### Rank order effects

extraneous influences on DV can arise when multiple conditions are presented, where conditions presented earlier may be responded to differently than conditions presented later.

### Measuring same participants (repeated measures design) or matched pairs produces a

dependent samples design

### Measuring same participants (repeated measures design) or matched pairs produces a dependent samples design Benefits:

Ensures that distribution(s) of scores on EVs related to participants are held constant from one condition to next. This can greatly reduce the standard error for the difference between conditions

### random sampling

refers to how participants are sampled from the population; and ensures that the sample is representative of the population; hence results can be generalised

increases external validity

### Independent and dependent samples designs provide two different ways of controlling for EVs related to participants

individual difference variables such as intelligence, experience