How can we help?

You can also find more resources in our Help Center.

32 terms

AP Calculus Facts: trig

STUDY
PLAY
sin(0)
√(0/4) = 0
cos(0)
1
tan(0)
0
sin(30)
sin(π/6)
√(1/4) = 1/2
cos(30)
cos(π/6)
(√3)/2
tan(30)
tan(π/6)
1/(√3)
sin(45)
sin(π/4)
(√2)/2
cos(45)
cos(π/4)
(√2)/2
tan(45)
tan(π/4)
1
sin(90)
sin(π/2)
1
cos(90)
cos(π/2)
0
tan(90)
tan(π/2)
undefined
sinθ
opp/hyp
cosθ
adj/hyp
tanθ
opp/adj
sinθ/cosθ
secθ
1/cosθ
cscθ
1/sinθ
cotθ
1/tanθ
cosθ/sinθ
Range of sin^(-1)
(-π/2)≤ sin^(-1)θ ≤ (π/2)
Range of cos^(-1)
0 ≤ cos^(-1)θ ≤ π
Range of tan^(-1)
(-π/2)≤ tan^(-1)θ ≤ (π/2)
(sin x)(csc x) =1
Reciprocal identity
(sin x)(csc x) =1
(cos x)(sec x) = 1
Reciprocal identity
(cos x)(sec x) = 1
(tan x)(cot x) = 1
reciprocal identity
(tan x)(cot x) = 1
sin 2x = (2 sin x)(cos x)
sin 2x = (2 sin x)(cos x)
cos 2x = (cos²x) - (sin²x)
cos 2x = (cos²x) - (sin²x)
cos 2x = (2 cos²x) -1
cos 2x = (2 cos²x) -1
(sin²x) + (cos²x) = 1
(sin²x) + (cos²x) = 1
1 + tan²x = sec²x
1 + tan²x = sec²x
1 + cot²x = csc²x
1 + cot²x = csc²x
(sin(angle))/(opposite side) = constant
Law of Sines
(sin(angle))/(opposite side) = constant
a² = b² + c² - 2bc(cos A)
Law of Cosines
a² = b² + c² - 2bc(cos A)