NAME

Question types


Start with


Question limit

of 45 available terms

Advertisement Upgrade to remove ads
Print test

5 Written questions

5 Matching questions

  1. Fats
  2. Fermentation
  3. Alcohol Fermentation
  4. Cellular Metabolism
  5. Glucose Catabolism - event and location
  1. a Event --> Location

    glycolysis -- cytoplasm
    fermentation -- cytoplasm
    pyruvate to acetyl CoA -- mitochondrial matrix
    TCA cycle -- mitochondrial matrix
    ETC - inner mintochondrial matrix
  2. b - regeneration NAD⁺ to continue glycolysis without O₂
    - reduce pyruvate to ethanol or lactic acid
    - fermentation produces only 2 ATP per glucose molecule
  3. c - stored in adipose tissue in the form of triglyceride
    - when needed, they are hydrolyzed by lipases to fatty acids and glycerol, and are carried by the blood to other tissues for oxidation
    - glycerol can be converted into PGAL
    - a fatty acid must be "activated" first in the cytoplasm, this requires 2 ATP
    - on active, it is transorted into mitochondrion and taken through a series of "beta-oxidation cycles" that convert it into two carbon fragments, then converted to acetyl CoA, which enter TCA cycle.
    - each round of beta oxidation generates 1 NADH and 1 FADH₂
    -fats yield the most ATP per gram
  4. d - the sum total of all chemical reactions that take place in a cell
    - either anabolic (require energy) or catabolic (release energy)
  5. e - occurs in yeast and bacteria only
    - pyruvate produced in glycolysis is decarboxylated to acetaldehyde, then reduced by NADH in step 5 of glycolysis to yield ethanol
    - pyruvate --> acetaldehyde --> ethanol

5 Multiple choice questions

  1. - last carrier of the ETC
    - passes its electron to the final eectron acceptor, O₂
    - in addition, O₂ picks up a pair of hydrogen ions from the surrounding medium and forms water
    - 2H⁺ + 2e⁻ + ½ O₂ --> H₂O
  2. - disaccharides are hydrolyzed into monosaccharides
    - then converted into glucose or glycolytic intermediates
    - glycogen in the liver can be converted into glucose 6-phosphate, a glycolytic intermediate
  3. - ATP synthesis is directly coupled with the degradation of glucose without the participation of an intermediate molecule like NAD⁺
  4. - there are energy losses as electrons are transferred from one complex to the next, this energy is then used to synthesize 1 ATP per complex
    - since we have 3 complexes, we generate 3 ATP
    - NADH delivers its electrons to NADH dehydrogenase complex, so for each NADH = 3 ATP
    - FADH₂ bypasses the NADH dehydrogenase complex and delivers directly to carrier Q (ubiquinone), which is between complex 1 and 2, so each FADH₂ = 2 ATP
  5. - from proton gradient
    - drives H+ back across inner membrane and into the matrix
    - membrane is impermeable to ions, so H⁺ must flow through specialized channels provided by enzyme complexes called ATP synthetases
    - as H⁺ pass through ATP synthetases, energy is released to allow for the phosphorylation of ADP to ATP
    - oxidative phosphorylation: coupling of oxidation of NADH with phosphorylation of ADP

5 True/False questions

  1. Proton Gradient- as NADH passes its electrons to the ETC, free H⁺ are released and accumulate in mitochondrial matrix
    - ETC pumps these ions out of the matrix, across the inner mitochondrial membrane and into intermembrane space at each of the three protein complexes
    - the continuous translocation of H⁺ creates a positively charged acidic environment in the intermembrane space

          

  2. Energy Carriers- molecular carriers used by the cell to shuttle energy between reactions
    - ATP, NAD⁺, FAD

          

  3. Pyruvate Decarboxylation- pyruvate formed during glycolysis is transported from the cytoplasm into the mitochondrial matrix where it is carboxylated (lost a CO₂), and the remaining acetyl group is transfered to coenzyme A to form acetyl CoA.
    - in process, NAD⁺ is reduced to NADH
    - pyruvate + coenzyme A -- acetyl CoA

          

  4. Carrier Coenzymes- NAD⁺, FAD, NADP⁺
    - transport the high energy electrons of the hydrogen atoms to a series of carrier moelcules on the inner mitochondrial membrane (electron transport chain)

          

  5. Metabolic Map...