NAME

Question types


Start with


Question limit

of 45 available terms

Advertisement Upgrade to remove ads
Print test

5 Written questions

5 Matching questions

  1. ETC without )₂
  2. Cellular Metabolism
  3. ATP Generation and the Proton Pump
  4. ADP
  5. Fermentation
  1. a - the sum total of all chemical reactions that take place in a cell
    - either anabolic (require energy) or catabolic (release energy)
  2. b - without oxygen, ETC becomes backlogged with electrons and NAD⁺ can't be regenerated to continue glycolysis without lactic acid fermentation occuring
    - Cyanide and dinitrophenol works the same way.
    - Cyanide blocks the transfer of electrons from Cytochrome a₃ to O₂
    - Dinitrophenol uncouples the electron transport chain from the proton gradient established across the inner mitochondrial membrane
  3. c - regeneration NAD⁺ to continue glycolysis without O₂
    - reduce pyruvate to ethanol or lactic acid
    - fermentation produces only 2 ATP per glucose molecule
  4. d - there are energy losses as electrons are transferred from one complex to the next, this energy is then used to synthesize 1 ATP per complex
    - since we have 3 complexes, we generate 3 ATP
    - NADH delivers its electrons to NADH dehydrogenase complex, so for each NADH = 3 ATP
    - FADH₂ bypasses the NADH dehydrogenase complex and delivers directly to carrier Q (ubiquinone), which is between complex 1 and 2, so each FADH₂ = 2 ATP
  5. e - adenosine diphosphate
    - Pi: inorganic phosphate
    - ATP --> ADP + Pi + 7 kcal/mole
    - the 7 kcal/mole provides energy for endergonic/endothermic reactions like muscle contraction, motility and active transport across plasma membranes

5 Multiple choice questions

  1. - series of reactions that lead to the oxidative breakdown of glucose into two molecules of pyruvate, the production of ATP and reduction of NAD⁺ into NADH
    - occurs in cytoplasm
    - mediated by specific enzymes
  2. - electrons are transferred to NAD⁺ and FAD, generating NADH and FADH₂, which transport electrons to electron transport chain, where ATP is produced via oxidative phosporylation
    - each molecule of glucose = 2 pyruvates
    2x3 NADH --> 6 NADH
    2x1 FADH₂ --> 2 FADH₂
    2x1 GTP (ATP) --> 2 ATP
  3. 2 Acetyl CoA + 6 NAD⁺ + 2 FAD + 2 ATP + 2Pi + 4H₂O

    -->

    4 CO₂ + 6 NADH + 2 FADH₂ + 2 ATP + 4 H⁺ + 2 CoA
  4. - ATP synthesis is directly coupled with the degradation of glucose without the participation of an intermediate molecule like NAD⁺
  5. Event --> Location

    glycolysis -- cytoplasm
    fermentation -- cytoplasm
    pyruvate to acetyl CoA -- mitochondrial matrix
    TCA cycle -- mitochondrial matrix
    ETC - inner mintochondrial matrix

5 True/False questions

  1. Fate of Pyruvate- disaccharides are hydrolyzed into monosaccharides
    - then converted into glucose or glycolytic intermediates
    - glycogen in the liver can be converted into glucose 6-phosphate, a glycolytic intermediate

          

  2. Oxidation- gain of electrons

          

  3. Alternate Energy Sources- when glucose supplies run low, the body uses these (in order): carbohydrates, fats and proteins
    - these are first converted to either glucose or glucose intermediates, which can be degraded in the glycolytic pathway and TCA cycle

          

  4. ATP- adenosine triphosphate
    - cell's main energy currency
    - synthesized during glucose catabolism
    - composed of nitrogenous base adenine, sugar ribose and three weakly linked phosphate groups
    - energy of ATP is stored in these covalent bonds (high-energy bonds)

          

  5. Autotrophic- green plants
    - convert sunlight into bond energy stored in the bonds of organic compounds (glucose) in the anabolic process of photosythesis
    - don't need an exogenous supply of organic compounds

          

Create Set