NAME

Question types


Start with


Question limit

of 45 available terms

Advertisement Upgrade to remove ads
Print test

5 Written questions

5 Matching questions

  1. ADP
  2. The Citric Acid Cyle (TCA Cycle)
  3. Cellular Metabolism
  4. ATP Generation and the Proton Pump
  5. Electron Carriers
  1. a - the sum total of all chemical reactions that take place in a cell
    - either anabolic (require energy) or catabolic (release energy)
  2. b - there are energy losses as electrons are transferred from one complex to the next, this energy is then used to synthesize 1 ATP per complex
    - since we have 3 complexes, we generate 3 ATP
    - NADH delivers its electrons to NADH dehydrogenase complex, so for each NADH = 3 ATP
    - FADH₂ bypasses the NADH dehydrogenase complex and delivers directly to carrier Q (ubiquinone), which is between complex 1 and 2, so each FADH₂ = 2 ATP
  3. c - known as the Krebs cycle or the tricarboxylic acid cycle (TCA cycle)
    - begins when the two carbon acetyl group from acetyl CoA combines with oxaloacetate, a four carbon molecule, to form the six carbon citrate
    - 2CO₂ are released, oxaloacetate is regenerated to use for another turn of the cycle
    - 1 cycle = 1 ATP produced by substrate level phosporylation via GTP intermediate
    - electrons are transferred to NAD⁺ and FAD, generating NADH and FADH₂, which transport electrons to electron transport chain
  4. d - categorized into three large protein complexes:
    a) NADH dehydrogenase
    b) the b-c₁ complex
    c) cytochrome oxidase
  5. e - adenosine diphosphate
    - Pi: inorganic phosphate
    - ATP --> ADP + Pi + 7 kcal/mole
    - the 7 kcal/mole provides energy for endergonic/endothermic reactions like muscle contraction, motility and active transport across plasma membranes

5 Multiple choice questions

  1. - pyruvate formed during glycolysis is transported from the cytoplasm into the mitochondrial matrix where it is carboxylated (lost a CO₂), and the remaining acetyl group is transfered to coenzyme A to form acetyl CoA.
    - in process, NAD⁺ is reduced to NADH
    - pyruvate + coenzyme A -- acetyl CoA
  2. 6CO₂ + 2H₂O + energy --> C₆H₁₂O₆ + 6O₂
  3. - occurs in yeast and bacteria only
    - pyruvate produced in glycolysis is decarboxylated to acetaldehyde, then reduced by NADH in step 5 of glycolysis to yield ethanol
    - pyruvate --> acetaldehyde --> ethanol
  4. - obtain energy catabolically
    - break down organic nutrients that must be ingested
  5. - without oxygen, ETC becomes backlogged with electrons and NAD⁺ can't be regenerated to continue glycolysis without lactic acid fermentation occuring
    - Cyanide and dinitrophenol works the same way.
    - Cyanide blocks the transfer of electrons from Cytochrome a₃ to O₂
    - Dinitrophenol uncouples the electron transport chain from the proton gradient established across the inner mitochondrial membrane

5 True/False questions

  1. Review of Glucose Catabolism- Net amount of ATP = ATP by substrate level phosphorylation + ATP by oxidative phosphorylation
    - Substrate level = 1 glucose = ATP from glycolysis + (1 ATP x 2 turn of Citric Acid Cycle) ---> 4 ATP
    - Oxidative = 32 ATP
    - Total = 36 ATP

          

  2. Oxidative Phosphorylation- ATP is produced when high energy potential electrons are transferred from NADH and FADH₂ to oxygen by a series of carrier molecules located in the inner mitochondrial membrane
    - as the electrons are transferred from carrier to carrier, free energy is released
    - later this energy is used to form ATP

          

  3. The Citric Acid Cyle continued- known as the Krebs cycle or the tricarboxylic acid cycle (TCA cycle)
    - begins when the two carbon acetyl group from acetyl CoA combines with oxaloacetate, a four carbon molecule, to form the six carbon citrate
    - 2CO₂ are released, oxaloacetate is regenerated to use for another turn of the cycle
    - 1 cycle = 1 ATP produced by substrate level phosporylation via GTP intermediate
    - electrons are transferred to NAD⁺ and FAD, generating NADH and FADH₂, which transport electrons to electron transport chain

          

  4. Proton-Motive Force- from proton gradient
    - drives H+ back across inner membrane and into the matrix
    - membrane is impermeable to ions, so H⁺ must flow through specialized channels provided by enzyme complexes called ATP synthetases
    - as H⁺ pass through ATP synthetases, energy is released to allow for the phosphorylation of ADP to ATP
    - oxidative phosphorylation: coupling of oxidation of NADH with phosphorylation of ADP

          

  5. Lactic Acid Fermentation- occurs in certain fungi and bacteria and in human muscle cells during strenuous activity
    - happens when oxygen supply to muscle cells lags behind the rate of glucose catabolism
    - pyruvate generated is reduced to lactic acid, which can lower blood pH if accumulated, eventually becomes muscle fatigue
    - oxygen debt: the amount of oxygen needed to oxidize lactic acid back to pyruvate and enters cellular respiration