40 terms

Term S - Dérivées

STUDY
PLAY

Terms in this set (...)

f'(x) = 4 x³
f(x) = x⁴
f'(x) = - 1/x²
f(x) = 1/x
f'(x) = 1
f(x) = x
f'(x) = 1/(2√x)
f(x) = √x
f'(x) = 0
f(x) = π
f'(x) = eˣ
f(x) = eˣ
f'(x) = - 4/x⁵
f(x) = 1/x⁴
f'(x) = 1/x
f(x) = ㏑ x
f'(x) = - sin x
f(x) = cos x
f'(x) = 8x
f(x) = 4x² + 3
f'(x) = cos x
f(x) = sin x
f'(x) = 8 + 3/x²
f(x) = 8x - 3/x
f'(x) = -2sin x - 5cos x
f(x) = 2cos x - 5sin x
f'(x) = 12x² + 7/(2√x)
f(x) = 4x³ + 7√x
f'(x) = 6eˣ
f(x) = 6eˣ - 5
f'(x) = 4/x + 3sin x
f(x) = 4㏑ x - 3cos x
f'(x) = 4cos x - 14x
f(x) = 4sin x - 7x²
f'(x) = 1 + 3/x
f(x) = x + 3㏑ x
f'(x) = 4/√x - 2eˣ
f(x) = 8√x - 2eˣ
f'(x) = - 5/x² + (2x³)/3
f(x) = 5/x + x⁴/6
f'(x) = eˣ + x eˣ
f(x) = x eˣ
f'(x) = cos x * √x + sin x / (2√x)
f(x) = sin x * √x
f'(x) = 3x² * ㏑ x + x²
f(x) = x³ * ㏑ x
f'(x) = cos x - x sin x
f(x) = x cos x
f'(x) = 5/2 * x√x
f(x) = x²√x
f'(x) = (1 - ㏑ x) /x²
f(x) = (㏑ x ) /x
f'(x) =(-x sin x - 2cos x) /x³
f(x) = (cos x) /x²
f'(x) = (3x² + 2x + 3) / (3x + 1)²
f(x) = (x² - 1) / (3x + 1)
f'(x) = 1 / (cos x)²
f(x) = sin x / cos x
f'(x) =(㏑ x - 1) / (㏑ x)²
f(x) = x /㏑ x
f'(x) =(2x - x²) /eˣ
f(x) = x²/eˣ
f'(x) = - 2x/ (x² - 3)²
f(x) = 1/ (x² - 3)
f'(x) = 3x² * cos( x³ )
f(x) = sin( x³ )
f'(x) = 2x³/ √(x⁴ + 2)
f(x) = √(x⁴ + 2)
f'(x) = - 4sin x * (cos x)³
f(x) = (cos x)⁴
f'(x) = 5e⁵ˣ
f(x) = e⁵ˣ
f'(x) = 6/x
f(x) = ㏑(8x⁶)
f'(x) = 12(4x - 3)²
f(x) = (4x - 3)³
f'(x) = 4(7 + 2㏑ x)/x
f(x) =(7 + 2㏑ x)²
f'(x) = 1 + cos x * sin( sin x )
f(x) = ㏑(eˣ) - cos( sin x )