### Book

## Partition Functions and Automorphic Forms

This book offers an introduction to the research in several recently discovered and actively developing mathematical and mathematical physics areas. It focuses on: 1) Feynman integrals and modular functions, 2) hyperbolic and Lorentzian Kac-Moody algebras, related automorphic forms and applications to quantum gravity, 3) superconformal indices and elliptic hypergeometric integrals, related instanton partition functions, 4) moonshine, its arithmetic aspects, Jacobi forms, elliptic genus, and string theory, and 5) theory and applications of the elliptic Painleve equation, and aspects of Painleve equations in quantum field theories. All the topics covered are related to various partition functions emerging in different supersymmetric and ordinary quantum field theories in curved space-times of different (d=2,3,…,6) dimensions. Presenting multidisciplinary methods (localization, Borcherds products, theory of special functions, Cremona maps, etc) for treating a range of partition functions, the book is intended for graduate students and young postdocs interested in the interaction between quantum field theory and mathematics related to automorphic forms, representation theory, number theory and geometry, and mirror symmetry.

We give a brief account of the key properties of elliptic hypergeometric integrals --- a relatively recently discovered top class of transcendental special functions of hypergeometric type. In particular, we describe an elliptic generalization of Euler?s and Selberg?s beta integrals, elliptic analogue of the Euler-Gauss hypergeometric function and some multivariable elliptic hypergeometric functions on root systems. The elliptic Fourier transformation and corresponding integral Bailey lemma technique is outlined together with a connection to the star-triangle relation and Coxeter relations for a permutation group. We review also the interpretation of elliptic hypergeometric integrals as superconformal indices of four dimensional supersymmetric quantum field theories and corresponding applications to Seiberg type dualities.

Abstract This mini course is an additional part to my semester course on the theory of Jacobi modular forms given at the mathematical department of NRU HSE in Moscow (see Gritsenko Jacobi modular forms: 30 ans après; COURSERA (12 lectures and seminars), 2017–2019). This additional part contains some applications of Jacobi modular forms to the theory of elliptic genera and Witten genus. The subject of this course is related to my old talk given in Japan (see Gritsenko (Proc Symp “Automorphic forms and L-functions” 1103:71–85, 1999)).

We study the moduli spaces of polarised irreducible symplectic manifolds. By a comparison with locally symmetric varieties of orthogonal type of dimension 20, we show that the moduli space of 2d polarised (split type) symplectic manifolds which are deformation equivalent to degree 2 Hilbert schemes of a K3 surface is of general type if d is at least 12.

To resolve some geometric problems we give a new, clear, formulation of Siegel's formula for the number of representationс natural numbers by positive definite quadratic forms of odd rank. It may be expressed either in terms of Zagier L-functions or in terms of the H.~Cohen numbers.

Abstract This mini course is an additional part to my semester course on the theory of Jacobi modular forms given at the mathematical department of NRU HSE in Moscow (see Gritsenko Jacobi modular forms: 30 ans après; COURSERA (12 lectures and seminars), 2017–2019). This additional part contains some applications of Jacobi modular forms to the theory of elliptic genera and Witten genus. The subject of this course is related to my old talk given in Japan (see Gritsenko (Proc Symp “Automorphic forms and L-functions” 1103:71–85, 1999)).

We prove that there exist exactly eight Siegel modular forms with respect to the congruence subgroups of Hecke type of the paramodular groups of genus two vanishing precisely along the diagonal of the Siegel upper half-plane. This is a solution of a question formulated during the conference "Black holes, Black Rings and Modular Forms" (ENS, Paris, August 2007). These modular forms generalize the classical Igusa form and the forms constructed by Gritsenko and Nikulin in 1998.

We give a brief account of the key properties of elliptic hypergeometric integrals --- a relatively recently discovered top class of transcendental special functions of hypergeometric type. In particular, we describe an elliptic generalization of Euler?s and Selberg?s beta integrals, elliptic analogue of the Euler-Gauss hypergeometric function and some multivariable elliptic hypergeometric functions on root systems. The elliptic Fourier transformation and corresponding integral Bailey lemma technique is outlined together with a connection to the star-triangle relation and Coxeter relations for a permutation group. We review also the interpretation of elliptic hypergeometric integrals as superconformal indices of four dimensional supersymmetric quantum field theories and corresponding applications to Seiberg type dualities.

Using the DAHA-Fourier transform of q-Hermite polynomials multiplied by level-one theta functions, we obtain expansions of products of any number of such theta functions in terms of the q-Hermite polynomials. An ample family of modular functions satisfying Rogers-Ramanujan type identities for arbitrary (reduced, twisted) affine root systems is obtained as an application. A relation to Rogers dilogarithm and Nahm's conjecture is discussed. The q-Hermite polynomials are closely related to the Demazure level-one characters in the twisted case (Sanderson, Ion), which connects our formulas to tensor products of level-one integrable Kac-Moody modules, their coset theory and the level-rank duality. © 2013 Elsevier Inc.

The name "K3 surfaces" was coined by A. Weil in 1957 when he formulated a research programme for these surfaces and theirmoduli. Since then, irreducible holomorphic symplectic manifolds have been introduced as a higher dimensional analogue of K3 surfaces. In this paper we present a review of this theory starting from the definition of K3 surfaces and going as far as the global Torelli theorem for irreducible holomorphic symplectic manifolds as recently proved by M. Verbitsky. For many years the last open question of Weil's programme was that of the geometric type of the moduli spaces of polarised K3 surfaces. We explain how this problem has been solved. Our method uses algebraic geometry, modular forms and Borcherds automorphic products. We collect and discuss the relevant facts from the theory of modular forms with respect to the orthogonal group O(2,n). We also give a detailed description of quasi pull-back of automorphic Borcherds products. This part contains previously unpublished results. We apply our geometric-automorphic method to study moduli spaces of both polarised K3 surfaces and irreducible symplectic varieties.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.