Derivatives (2) and (3)

STUDY
PLAY

Terms in this set (...)

d/dx arcsin(x)
=1/√(1-x²)
d/dx arcsin(u)
=u'/√(1-u²)
d/dx arccos(x)
=-1/√(1-x²)
d/dx arccos(u)
=-u'/√(1-u^2)
d/dx arctan(x)
=1/(1+x²)
d/dx arctan(u)
=u'/(1+u²)
d/dx arccot(x)
=-1/(1+x²)
d/dx arccot(u)
=-u'/(1+u²)
d/dx arcsec(x)
=1/x√(x²-1)
d/dx arcsec(u)
=u'/u√(u²-1)
d/dx arccsc(x)
=-1/x√(x²-1)
d/dx arccsc(u)
=-u'/u√(u²-1)
d/dx eˣ
= eˣ
d/dx e^u
= e^u * u'
d/dx aˣ
= aˣ ln(a)
d/dx a^u
= (ln a)·a^u·u'
d/dx ln(x)
= 1/x
d/dx ln(u)
= u'/u
d/dx log(a)x
= 1/[(lna)(x)]
d/dx log(a)u
= [u']/[(lna)(u)]