\r\nproblem for the heat equation with Dirichlet and Neumann boundary

\r\ndata. We will reconstruct the exact form of the unknown source

\r\nterm from additional boundary conditions. Our motivation is to

\r\ndetect the location, the size and the shape of source support.

\r\nWe present a one-shot algorithm based on the Kohn-Vogelius

\r\nformulation and the topological gradient method. The geometric

\r\ninverse source problem is formulated as a topology optimization

\r\none. A topological sensitivity analysis is derived from a source

\r\nfunction. Then, we present a non-iterative numerical method for the

\r\ngeometric reconstruction of the source term with unknown support

\r\nusing a level curve of the topological gradient. Finally, we give

\r\nseveral examples to show the viability of our presented method.","references":"[1] A. B. Abda, M. Hassine, M. Jaoua, and M. Masmoudi, Topological\r\nsensitivity analysis for the location of small cavities in stokes flow, SIAM\r\nJournal on Control and Optimization. 48(2009), 2871-2900.\r\n[2] V. Akc\u00b8elik, G. Biros, O. Ghattas, K. R. Long, and B. van\r\nBloemenWaanders, A variational finite element method for source\r\ninversion for convectivediffusive transport, Finite Elements in Analysis\r\nand Design. 39(2003), 683-705.\r\n[3] Y. Alber and I. Ryazantseva, Nonlinear ill-posed problems of monotone\r\ntype. Springer, 2006.\r\n[4] G. Alessandrini and V. Isakov, Analicity and uniqueness for the inverse\r\nconductivity problem. 1996.\r\n[5] M. A. Anastasio, J. Zhang, D. Modgil, and P. J. La Rivi`ere, Application\r\nof inverse source concepts to photoacoustic tomography, Inverse\r\nProblems. 23(2007), S21.\r\n[6] O. Andreikiv, O. Serhienko, et al, Acoustic-emission criteria for rapid\r\nanalysis of internal defects in composite materials, Materials Science.\r\n37(2001), 106-117.\r\n[7] S. R. Arridge, Optical tomography in medical imaging, Inverse\r\nproblems. 15(1999), R41.\r\n[8] H. Bellout, A. Friedman, and V. Isakov, Stability for an inverse problem\r\nin potential theory, Transactions of the American Mathematical Society.\r\n332(1992), 271-296.\r\n[9] J. Benoit, C. Chauvi`ere, and P. Bonnet, Source identification in time\r\ndomain electromagnetics, Journal of Computational Physics. 231(2012),\r\n3446-3456.\r\n[10] A. Canelas, A. Laurain, and A. A. Novotny, A new reconstruction\r\nmethod for the inverse potential problem, Journal of Computational\r\nPhysics. 268(2012), 417-431.\r\n[11] A. Canelas, A. Laurain, and A. A. Novotny, A new reconstruction\r\nmethod for the inverse source problem from partial boundary\r\nmeasurements, Inverse Problems. 31(2015), 075009.\r\n[12] X. Cheng, R. Gong, and W. Han, A new general mathematical\r\nframework for bioluminescence tomography, Computer Methods in\r\nApplied Mechanics and Engineering. 197(2008), 524-535.\r\n[13] M. Choulli, Local stability estimate for an inverse conductivity problem,\r\nInverse problems. 19(2003), 895.\r\n[14] M. Choulli, On the determination of an inhomogeneity in an elliptic\r\nequation, Applicable Analysis. 85(2006), 693-699.\r\n[15] M. Choulli, Une introduction aux probl\u2018emes inverses elliptiques et\r\nparaboliques, Berlin, Springer, 2009.\r\n[16] M. Choulli and M. Yamamoto, Conditional stability in determining\r\na heat source, Journal of inverse and ill-posed problems. 12(2004),\r\n233244.\r\n[17] A. Doicu, T. Trautmann, and F. Schreier, Numerical regularization for\r\natmospheric inverse problems, Springer Science & Business Media,\r\n2010.\r\n[18] A. El Badia and T. Ha-Duong, On an inverse source problem for the\r\nheat equation. application to a pollution detection problem, Journal of\r\ninverse and ill-posed problems. 10(2002), 585-599.\r\n[19] J. Ferchichi, M. Hassine, and H. Khenous, Detection of point-forces\r\nlocation using topological algorithm in stokes flows, Applied\r\nMathematics and Computation. 219(2013), 7056-7074.\r\n[20] S. Garreau, P. Guillaume, and M. Masmoudi, The topological asymptotic\r\nfor pde systems: the elasticity case, SIAM journal on control and\r\noptimization. 39(2001), 1756-1778.\r\n[21] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of\r\nsecond order, springer, 2015.\r\n[22] W. Guo, K. Jia, D. Han, Q. Zhang, X. Liu, J. Feng, C. Qin, X. Ma, and\r\nJ. Tian, Efficient sparse reconstruction algorithm for bioluminescence\r\ntomography based on duality and variable splitting, Applied optics.\r\n51(2012), 5676-5685.\r\n[23] W. Han, W. Cong, and G. Wang, Mathematical theory and numerical\r\nanalysis of bioluminescence tomography, Inverse Problems. 22(2006),\r\n1659.\r\n[24] M. Hassine, S. Jan, and M. Masmoudi, From differential calculus to 01\r\ntopological optimization, SIAM Journal on Control and Optimization.\r\n45(2007), 1965-1987.\r\n[25] M. Hassine, M. Hrizi, One-iteration reconstruction algorithm for\r\ngeometric inverse source problem, Submitted.\r\n[26] A. T. Hayes, A. Martinoli, and R. M. Goodman, Swarm robotic\r\nodor localization, Off-line optimization and validation with real robots.\r\nRobotica. 21(2003), 427-441.\r\n[27] F. Hettlich and W. Rundell, The determination of a discontinuity in a\r\nconductivity from a single boundary measurement, Inverse Problems.\r\n14(1998), 67.\r\n[28] F. Hettlich and W. Rundell, Identification of a discontinuous source in\r\nthe heat equation, Inverse Problems. 17(2001), 1465.\r\n[29] V. Isakov. Inverse problems for partial differential equations, volume\r\n127. Springer Science & Business Media, 2006.\r\n[30] S. Larnier and M. Masmoudi, The extended adjoint method, ESAIM:\r\nMathematical Modelling and Numerical Analysis. 47(2013), 83-108.\r\n[31] N. F. Martins, An iterative shape reconstruction of source functions in\r\na potential problem using the mfs, Inverse Problems in Science and\r\nEngineering. 20(2012), 1175-1193.\r\n[32] P. Stefanov and G. Uhlmann, Thermoacoustic tomography with variable\r\nsound speed, Inverse Problems. 25(2009), 075011.\r\n[33] R. Unnthorsson, T. P. Runarsson, and M. T. Jonsson. Acoustic emission\r\nbased fatigue failure criterion for cfrp, International Journal of Fatigue.\r\n30(2008), 11-20.\r\n[34] G. Wang, Y. Li, and M. Jiang, Uniqueness theorems in bioluminescence\r\ntomography, Medical physics. 31(2004), 2289-2299.","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 121, 2017"}