Sketch the curve traced out by the given vectorvalued function by hand. r(t)=⟨t,t2+1,−1⟩\mathbf{r}(t)=\left\langle t, t^{2}+1,-1\right\rangler(t)=⟨t,t2+1,−1⟩
Decide whether the statement is true or false. Justify your answer. 1 = 1%
Sketch the graph of the equation using extrema, intercepts, symmetry, and asymptotes. Then use a graphing utility to verify your result. y=4(1−1x2)y=4\left(1-\frac{1}{x^{2}}\right)y=4(1−x21)
Calculate lower and upper bounds for the following calculations, if each of the numbers is given to the nearest whole number. a) 14×2014 \times 2014×20 b) 135×25135 \times 25135×25 c) 100×50100 \times 50100×50 d) 4010\frac{40}{10}1040 e) 3311\frac{33}{11}1133 f) 12515\frac{125}{15}15125 g) 12×6516\frac{12 \times 65}{16}1612×65 h) 101×2869\frac{101 \times 28}{69}69101×28 i) 250×7100\frac{250 \times 7}{100}100250×7 j) 4432\frac{44}{3^{2}}3244 k) 57817×22\frac{578}{17 \times 22}17×22578 l) 10004×(3+8)\frac{1000}{4 \times(3+8)}4×(3+8)1000