Describe how the graph of g (x) = ∛(x - 4) is related to the graph of f(x) = √x.
Determine if the given set of vectors is a basis of R5R^5R5. If not, then determine the dimension of the subspace spanned by the vectors.
{[12345],[23451],[34512],[45123],[51234]}\left\{\left[\begin{array}{l} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{array}\right],\left[\begin{array}{l} 2 \\ 3 \\ 4 \\ 5 \\ 1 \end{array}\right],\left[\begin{array}{l} 3 \\ 4 \\ 5 \\ 1 \\ 2 \end{array}\right],\left[\begin{array}{l} 4 \\ 5 \\ 1 \\ 2 \\ 3 \end{array}\right],\left[\begin{array}{l} 5 \\ 1 \\ 2 \\ 3 \\ 4 \end{array}\right]\right\} ⎩⎨⎧⎣⎡12345⎦⎤,⎣⎡23451⎦⎤,⎣⎡34512⎦⎤,⎣⎡45123⎦⎤,⎣⎡51234⎦⎤⎭⎬⎫
Generalize the previous problem. Let a and b be integers and let A={x∈Z\in \mathbb{Z}∈Z:a|x} and B={x∈Z\in \mathbb{Z}∈Z:b|x}. Find and prove a necessary and sufficient condition for A⊆\subseteq⊆B. In other words, given the notation developed, find and prove a theorem of the form "A⊆\subseteq⊆B if and only if some condition involving a and b."
Determine whether the table represents a discrete probability distribution. If not, explain why not.
xP(x)1000.22000.33000.54000.45000.1\begin{array}{cc} \hline x & P(x)\\ \hline 100 & 0.2\\ 200 & 0.3\\ 300 & 0.5\\ 400 & 0.4\\ 500 & 0.1\\ \hline \end{array} x100200300400500P(x)0.20.30.50.40.1