Bus Stats Module 10

A study is done to determine if Company A retains its workers longer than Company B. It is believed that Company A has a higher retention than Company B. The study finds that in a sample of 11 workers at Company A their average time with the company is four years with a standard deviation of 1.5 years. A sample of 9 workers at Company B finds that the average time with the company was 3.5 years with a standard deviation of 1 year. Test this proposition at the 1% level of significance. Is this a test of two means or two proportions?
Click the card to flip 👆
1 / 31
Terms in this set (31)
A study is done to determine if Company A retains its workers longer than Company B. It is believed that Company A has a higher retention than Company B. The study finds that in a sample of 11 workers at Company A their average time with the company is four years with a standard deviation of 1.5 years. A sample of 9 workers at Company B finds that the average time with the company was 3.5 years with a standard deviation of 1 year. Test this proposition at the 1% level of significance. Is this a test of two means or two proportions?
A study is done to determine if Company A retains its workers longer than Company B. It is believed that Company A has a higher retention than Company B. The study finds that in a sample of 11 workers at Company A their average time with the company is four years with a standard deviation of 1.5 years. A sample of 9 workers at Company B finds that the average time with the company was 3.5 years with a standard deviation of 1 year. Test this proposition at the 1% level of significance. Are the populations standard deviations known or unknown?
The U.S. Center for Disease Control reports that the mean life expectancy was 47.6 years for whites born in 1900 and 33.0 years for nonwhites. Suppose that you randomly survey death records for people born in 1900 in a certain county. Of the 124 whites, the mean life span was 45.3 years with a standard deviation of 12.7 years. Of the 82 nonwhites, the mean life span was 34.1 years with a standard deviation of 15.6 years. Conduct a hypothesis test to see if the mean life spans in the county were the same for whites and nonwhites. Is this a test of means or proportions?
A study is done to determine if Company A retains its workers longer than Company B. It is believed that Company A has a higher retention than Company B. The study finds that in a sample of 11 workers at Company A their average time with the company is four years with a standard deviation of 1.5 years. A sample of 9 workers at Company B finds that the average time with the company was 3.5 years with a standard deviation of 1 year. Test this proposition at the 1% level of significance. Which distribution do you use to perform the test?
A study is done to determine which of two soft drinks has more sugar. There are 13 cans of Beverage A in a sample and six cans of Beverage B. The mean amount of sugar in Beverage A is 36 grams with a standard deviation of 0.6 grams. The mean amount of sugar in Beverage B is 38 grams with a standard deviation of 0.8 grams. The researchers believe that Beverage B has more sugar than Beverage A, on average. Both populations have normal distributions. What is the random variable?
A drug trial is attempted using a real drug and a pill made of just sugar. 18 people are given the real drug in hopes of increasing the production of endorphins. The increase in endorphins is found to be on average 8 micrograms per person, and the sample standard deviation is 5.4 micrograms. 11 people are given the sugar pill, and their average endorphin increase is 4 micrograms with a standard deviation of 2.4. From previous research on endorphins it is determined that it can be assumed that the variances within the two samples can be assumed to be the same. Test at 5% to see if the population mean for the real drug had a significantly greater impact on the endorphins than the population mean with the sugar pill. What is the null hypothesis?µ1 ≤ µ2A drug trial is attempted using a real drug and a pill made of just sugar. 18 people are given the real drug in hopes of increasing the production of endorphins. The increase in endorphins is found to be on average 8 micrograms per person, and the sample standard deviation is 5.4 micrograms. 11 people are given the sugar pill, and their average endorphin increase is 4 micrograms with a standard deviation of 2.4. From previous research on endorphins it is determined that it can be assumed that the variances within the two samples can be assumed to be the same. Test at 5% to see if the population mean for the real drug had a significantly greater impact on the endorphins than the population mean with the sugar pill. What is the alternative hypothesis?µ1 > µ2A drug trial is attempted using a real drug and a pill made of just sugar. 18 people are given the real drug in hopes of increasing the production of endorphins. The increase in endorphins is found to be on average 8 micrograms per person, and the sample standard deviation is 5.4 micrograms. 11 people are given the sugar pill, and their average endorphin increase is 4 micrograms with a standard deviation of 2.4. From previous research on endorphins it is determined that it can be assumed that the variances within the two samples can be assumed to be the same. Test at 5% to see if the population mean for the real drug had a significantly greater impact on the endorphins than the population mean with the sugar pill. What is the value of test statistic?2.31A drug trial is attempted using a real drug and a pill made of just sugar. 18 people are given the real drug in hopes of increasing the production of endorphins. The increase in endorphins is found to be on average 8 micrograms per person, and the sample standard deviation is 5.4 micrograms. 11 people are given the sugar pill, and their average endorphin increase is 4 micrograms with a standard deviation of 2.4. From previous research on endorphins it is determined that it can be assumed that the variances within the two samples can be assumed to be the same. Test at 5% to see if the population mean for the real drug had a significantly greater impact on the endorphins than the population mean with the sugar pill. Is the value of test statistic in the tail?YesA drug trial is attempted using a real drug and a pill made of just sugar. 18 people are given the real drug in hopes of increasing the production of endorphins. The increase in endorphins is found to be on average 8 micrograms per person, and the sample standard deviation is 5.4 micrograms. 11 people are given the sugar pill, and their average endorphin increase is 4 micrograms with a standard deviation of 2.4. From previous research on endorphins it is determined that it can be assumed that the variances within the two samples can be assumed to be the same. Test at 5% to see if the population mean for the real drug had a significantly greater impact on the endorphins than the population mean with the sugar pill. Ts significant evidence at the 95% level of confidence that the new medicine produces the effect desired?YesTwo types of valves are being tested to determine if there is a difference in pressure tolerances. Fifteen out of a random sample of 100 of Valve A cracked under 4,500 psi. Six out of a random sample of 100 of Valve B cracked under 4,500 psi. What is the p-value?0.0379Two types of valves are being tested to determine if there is a difference in pressure tolerances. Fifteen out of a random sample of 100 of Valve A cracked under 4,500 psi. Six out of a random sample of 100 of Valve B cracked under 4,500 psi. Test at a 5% level of significance. At the 5% significance level, _________.the data support that there is a difference in the pressure tolerances between the two valvesTrue or False: Two types of valves are being tested to determine if there is a difference in pressure tolerances. Fifteen out of a random sample of 100 of Valve A cracked under 4,500 psi. Six out of a random sample of 100 of Valve B cracked under 4,500 psi. Based on the data, we should reject the null hypothesis.TrueA bank has recently acquired a new branch and thus has customers in this new territory. They are interested in the default rate in their new territory. They wish to test the hypothesis that the default rate is different from their current customer base. They sample 200 files in area A, their current customers, and find that 20 have defaulted. In area B, the new customers, another sample of 200 files shows 12 have defaulted on their loans. What is the null hypothesis?H0:pA=pBA bank has recently acquired a new branch and thus has customers in this new territory. They are interested in the default rate in their new territory. They wish to test the hypothesis that the default rate is different from their current customer base. They sample 200 files in area A, their current customers, and find that 20 have defaulted. In area B, the new customers, another sample of 200 files shows 12 have defaulted on their loans. At a 10% level of significance can we say that the default rates are the same or different? Can we reject the null hypothesis?NoThe means of the number of revolutions per minute of two competing engines are to be compared. Thirty engines are randomly assigned to be tested. Both populations have normal distributions. The table shows the result. Do the data indicate that Engine 2 has higher RPM than Engine 1? Test at a 5% level of significance. What is the p-value?Almost 0The means of the number of revolutions per minute of two competing engines are to be compared. Thirty engines are randomly assigned to be tested. Both populations have normal distributions. The table shows the result. Do the data indicate that Engine 2 has higher RPM than Engine 1? Test at a 5% level of significance. Is there sufficient evidence to conclude that Engine 2 runs at a higher RPM than Engine 1?YesThe mean speeds of fastball pitches from two different baseball pitchers are to be compared. A sample of 14 fastball pitches is measured from each pitcher. The populations have normal distributions. The table shows the result. Scouters believe that Rodriguez pitches a speedier fastball. What is the random variable?The difference in mean speeds of the fastball pitches of the two pitchersThe mean speeds of fastball pitches from two different baseball pitchers are to be compared. A sample of 14 fastball pitches is measured from each pitcher. The populations have normal distributions. The table shows the result. Scouters believe that Rodriguez pitches a speedier fastball. What is the test statistic?-2.46The mean speeds of fastball pitches from two different baseball pitchers are to be compared. A sample of 14 fastball pitches is measured from each pitcher. The populations have normal distributions. The table shows the result. Scouters believe that Rodriguez pitches a speedier fastball. At the 1% significance level, can we reject the null hypothesis?YesA study was conducted to test the effectiveness of a software patch in reducing system failures over a six-month period. Results for randomly selected installations are shown the table. The "before" value is matched to an "after" value, and the differences are calculated. The differences have a normal distribution. Test at the 1% significance level. What is the random variable?The mean difference of the system failuresA study was conducted to test the effectiveness of a software patch in reducing system failures over a six-month period. Results for randomly selected installations are shown the table. The "before" value is matched to an "after" value, and the differences are calculated. The differences have a normal distribution. Test at the 1% significance level. What is the p-value?0.0067A study was conducted to test the effectiveness of a software patch in reducing system failures over a six-month period. Results for randomly selected installations are shown the table. The "before" value is matched to an "after" value, and the differences are calculated. The differences have a normal distribution. Test at the 1% significance level. Can we accept the null hypothesis?NoA study was conducted to test the effectiveness of a software patch in reducing system failures over a six-month period. Results for randomly selected installations are shown the table. The "before" value is matched to an "after" value, and the differences are calculated. The differences have a normal distribution. Test at the 1% significance level. True or False: There is enough evidence to support that the software patch is effective in reducing the number of system failures.TrueA doctor wants to know if a blood pressure medication is effective. Six subjects have their blood pressures recorded. After twelve weeks on the medication, the same six subjects have their blood pressure recorded again. For this test, only systolic pressure is of concern. Test at the 1% significance level. True or False: We reject the null hypothesis. There is not sufficient evidence to support that the medication is effective.FalseTwo types of valves are being tested to determine if there is a difference in pressure tolerances. Fifteen out of a random sample of 100 of Valve A cracked under 4,500 psi. Six out of a random sample of 100 of Valve B cracked under 4,500 psi. Test at a 5% level of significance. At the 5% significance level, ___________.the data support that there is a difference in the pressure tolerances between the two valves