Question

# Use a truth table to determine whether the symbolic form of the argument is valid or invalid.$\begin{array}{l}{p \wedge \sim q} \\ {\frac{p}{\therefore q}}\end{array}$

Solution

Verified
Step 1
1 of 4

To determine if the symbolic form of the argument is valid or invalid, rewrite it as a conditional statement in the form conjunction of the premises implies the conclusion''. Using a truth table, determine if the conditional is a tautology (true for all cases). If it is, then the argument is valid.

The conditional form of the argument is:

$[(p\wedge \sim q)\wedge q]\to \sim p$

Using a truth table,

## Recommended textbook solutions

#### Thinking Mathematically

7th EditionISBN: 9780134683713 (3 more)Robert F. Blitzer
8,369 solutions

#### Statistics for Business and Economics

11th EditionISBN: 9780324783254 (13 more)David R. Anderson, Dennis J. Sweeney, Thomas A. Williams
2,223 solutions

#### The Practice of Statistics for the AP Exam

5th EditionISBN: 9781464108730 (2 more)Daniel S. Yates, Daren S. Starnes, David Moore, Josh Tabor
2,433 solutions

#### Statistics and Probability with Applications

3rd EditionISBN: 9781464122163Daren S. Starnes, Josh Tabor
2,555 solutions