## Related questions with answers

- Write the equation $y + 2 = \frac { 1 } { 4 } ( x + 3 )$ in the following forms:
a. Slope-intercept form
b. Standard form
c. Standard form with a positive x-term
d. Standard form with no fractions or decimals

Solution

Verifieda. Slope-intercept form is $y=mx+b$ so solve the equation for $y$ to write it in slope-intercept form:

$\begin{align*} y+2&=\frac{1}{4}(x+3)\\ y+2&=\frac{1}{4}x+\frac{3}{4}&&\text{Distribute.}\\ y&=\frac{1}{4}x+\frac{3}{4}-2&&\text{Subtract 2 on both sides.}\\ y&=\frac{1}{4}x+\frac{3}{4}-\frac{8}{4}&&\text{Get a common denominator.}\\ y&=\frac{1}{4}x-\frac{5}{4}&&\text{Subtract the fractions.} \end{align*}$

b. Standard form is $Ax+By=C$ so move the $x$-term of the slope-intercept form to the left side:

$\begin{align*} y&=\frac{1}{4}x-\frac{5}{4}&&\text{Slope-intercept form.}\\ -\frac{1}{4}x+y&=-\frac{5}{4}&&\text{Subtract $\frac{1}{4}x$ on both sides.} \end{align*}$

c. Multiply both sides of the standard form from part b by $-1$ to write the standard form with a positive $x$-term:

$\begin{align*} -\frac{1}{4}x+y&=-\frac{5}{4}&&\text{Standard form from part b.}\\ -1\left(-\frac{1}{4}x+y\right)&=-1\left(-\frac{5}{4}\right)&&\text{Multiply both sides by $-1$.}\\ \frac{1}{4}x-y&=\frac{5}{4}&&\text{Distribute and multiply.} \end{align*}$

d. Multiply both sides of the standard form from part c by 4 to eliminate the fractions:

$\begin{align*} \frac{1}{4}x-y&=\frac{5}{4}&&\text{Standard form from part c.}\\ 4\left(\frac{1}{4}x-y\right)&=4\left(\frac{5}{4}\right)&&\text{Multiply both sides by 4.}\\ x-4y&=5&&\text{Distribute and multiply.} \end{align*}$

## Create a free account to view solutions

## Create a free account to view solutions

## Recommended textbook solutions

#### enVision Algebra 1

1st Edition•ISBN: 9780328931576Al Cuoco, Christine D. Thomas, Danielle Kennedy, Eric Milou, Rose Mary Zbiek#### Big Ideas Math Integrated Mathematics II

1st Edition•ISBN: 9781680330687Boswell, Larson## More related questions

- algebra

1/4

- algebra

1/7