Question

A certain loudspeaker system emits sound isotropically with a frequency of 2000 Hz2000 \mathrm{~Hz} and an intensity of 0.990 mW/m20.990 \mathrm{~mW} / \mathrm{m}^{2} at a distance of 6.10 m6.10 \mathrm{~m}. Assume that there are no reflections. (a) What is the intensity at 30.0 m30.0 \mathrm{~m} ? At 6.10 m6.10 \mathrm{~m}. what are (b) the displacement amplitude and (c) the pressure amplitude?

Solution

Verified
Answered 2 years ago
Answered 2 years ago
Step 1
1 of 3

Given:\textbf{Given:}

f=2000Hzf = 2000 \: \: \mathrm{Hz}

Io=0.960mWm2I_o = 0.960 \: \: \mathrm{\frac{mW}{m^2}}

ro=6.10mr_o = 6.10 \: \: \mathrm{m}

r=30.0mr = 30.0 \: \: \mathrm{m}

A:\textbf{A:}

We know that the sound intensity is defined as:

I=PA\begin{align} I &= \dfrac{P}{A} \end{align}

And for an isotropic source of sound, the area can be defined as:

A=4πr2\begin{align} A &= 4 \pi r^2 \end{align}

Plugging in Equation 2 to 1, we get:

I=P4πr2\begin{align} I &= \dfrac{P}{4 \pi r^2} \end{align}

Then we could get the quotient of the two intensities at different distance as shown below:

IIo=P4πr24πro2PIIo=ro2r2\begin{align*} &\dfrac{I}{I_o} = \dfrac{P}{4 \pi r^2} \cdot \dfrac{4 \pi r_o^2}{P} \\\\ &\boxed{\dfrac{I}{I_o} = \dfrac{r_o^2}{r^2} } \end{align*}

Solving for II and substituting all known values, we get:

I=Ioro2r2=0.960×1036.102302=3.969×105Wm2\begin{align*} I &= I_o \dfrac{r_o^2}{r^2} \\\\ &= 0.960 \times 10^{-3} \cdot \dfrac{6.10^2}{30^2} \\\\ &= \boxed{3.969 \times 10^{-5} \: \: \mathrm{\dfrac{W}{m^2}}} \end{align*}

Create an account to view solutions

Create an account to view solutions

More related questions

1/4

1/7