Question

(a) Confirm that the kinetic energy operator, (2/2m)d2/dx2- \left( \hbar ^ { 2 } / 2 m \right) \mathrm { d } ^ { 2 } / \mathrm { d } x ^ { 2 }, is hermitian. (b) The operator corresponding to the angular momentum of a particle is (/i)d/dϕ,( \hbar / \mathrm { i } ) \mathrm { d } / \mathrm { d } \phi , where ϕ\phi is an angle. Is this operator hermitian?

Solution

Verified
Answered 1 year ago
Answered 1 year ago
Step 1
1 of 19

a) Hermitian operator is operator which satisfies following condition:

<ΨiA^Ψi>=<A^ΨiΨj>\mathrm{<\Psi _i|\hat{A}\Psi _i>\:=\:<\hat{A}\Psi _i|\Psi _j>}

Create an account to view solutions

Create an account to view solutions

Recommended textbook solutions

Atkins Physical Chemistry 10th Edition by Julio de Paula, Peter Atkins

Atkins Physical Chemistry

10th EditionISBN: 9780199697403Julio de Paula, Peter Atkins
1,317 solutions
Introductory Nuclear Physics 3rd Edition by David Halliday, Kenneth S. Krane

Introductory Nuclear Physics

3rd EditionISBN: 9780471805533David Halliday, Kenneth S. Krane
Physical Chemistry 10th Edition by Julio de Paula, Peter Atkins

Physical Chemistry

10th EditionISBN: 9781429290197 (1 more)Julio de Paula, Peter Atkins
1,317 solutions
Physique Chimie terminales by Jean-Philippe Bellier, Julien Calafell, Marc Bigorre, Michel Barde, Nathalie Barde, Patrice Boudey, Stéphanie Bigorre, Sylvie Bertin, Thierry Baudoin

Physique Chimie terminales

ISBN: 9782017866091Jean-Philippe Bellier, Julien Calafell, Marc Bigorre, Michel Barde, Nathalie Barde, Patrice Boudey, Stéphanie Bigorre, Sylvie Bertin, Thierry Baudoin

More related questions

1/4

1/7