#### Question

A cylinder fitted with a piston contains liquid methanol at $20^{\circ} \mathrm{C}$, 100 kPa, and volume 10 L. The piston is moved, compressing the methanol to 20 MPa at constant temperature. Calculate the work required for this process. The isothermal compressibility of liquid methanol at $20^{\circ} \mathrm{C}$ is 1.22 $\times$10−9 m2/N.

Verified

#### Step 1

1 of 2

$\textbf{Given:}$

$T_1 = 20\text{\textdegree} C = 293.2\text{K}$

$V_1 = 10 \text{L} = 10\cdot 10^{-3}\text{m^3}$

$P_1 = 100\text{kPa}$

$P_2 = 20000\text{kPa}$

$\rho = 787 \text{kg/m^3}$

$\beta_T = 1.22\cdot 10^{-9} \text{m^2/N}$

Isothermal compressibility is defined by:

$\beta_T = - \frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_T$

Net work is $w = \int_{1}^{2} PdV$ or better $=\int_{1}^{2}P\left(\frac{\partial V}{\partial P}\right)_TdP_T$ because we can change it to

$w = \int_{1}^{2}P(-V\beta_T)dP_T$ (since $\left(\frac{\partial V}{\partial P}\right)_T = -V\beta_T$)

$w = \frac{-V\beta_T}{2}(P_2^2 - P_1^2)$ (we have all the values)

$w = \frac{-10\cdot10^{-3}\cdot1220}{2}(20^2 - 0.1^2)$

$\boxed{w = 2.44 \text{kJ}}$

## Create an account to view solutions

#### Recommended textbook solutions #### Fundamentals of Electric Circuits

6th EditionCharles Alexander, Matthew Sadiku
2,102 solutions #### Physics for Scientists and Engineers: A Strategic Approach with Modern Physics

4th EditionRandall D. Knight
3,509 solutions #### Advanced Engineering Mathematics

10th EditionErwin Kreyszig
4,134 solutions #### Fundamentals of Thermodynamics

8th EditionClaus Borgnakke, Richard E. Sonntag
2,812 solutions