Try the fastest way to create flashcards
Question

(a) Explain why the Intermediate Value Theorem gives no information about the zeros of the function f(x)=ln(x2+2)f(x)=\ln \left(x^{2}+2\right) on the interval [-2, 2]. (b) Use technology to determine whether f has a zero on the interval [-2,2].

Solution

Verified
Step 1
1 of 3

We would like to answer of the following question for the following expression.

 f(x)=ln (x2+2)                   At interval, [2, 2]\color{Brown}\ f(x)=\ln\ (x^2+2)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \text{At interval},\ [-2,\ 2]

\lozenge\ \ Solution:\text{\underline{\bf{Solution:}}}

(a) Explain why the intermediate value theorem gives no information about zeros of the function at the indicated interval.\text{\color{#4257b2}(a)\ Explain why the intermediate value theorem gives no information about zeros of the function at the indicated interval.}

First thing we will do, get the domain of the given function. this function is logarithmic function, so the domain equal to all real number.

Now we determine the value of function at the indicated interval as follows:

f(2)=ln ((2)2+2)=ln (4+2)=ln (6)=1.79                 f(2)=1.79 f(-2)=\ln\ ((-2)^2+2)=\ln\ (4+2)=\ln\ (6)=1.79\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \boxed{\ f(-2)=1.79\ }

f(2)=ln ((2)2+2)=ln (4+2)=ln (6)=1.79                 f(2)=1.79 f(2)=\ln\ ((2)^2+2)=\ln\ (4+2)=\ln\ (6)=1.79\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \boxed{\ f(2)=1.79\ }

From the above calculation, we have a positive value at \ (x=2, x=2)(x=-2,\ x=2),\ so the intermediate value theorem cant gives any information about zeros.

(b) Use technology to determine whether the function (f) has or not zeros at the indicated interval.\text{\color{#4257b2}(b)\ Use technology to determine whether the function $(f)$ has or not zeros at the indicated interval.}

According the result from part (a)(a)\ we can say that the function has no zero at the indicated interval

Create a free account to view solutions

Create a free account to view solutions

Recommended textbook solutions

Thomas' Calculus 14th Edition by Christopher E Heil, Joel R. Hass, Maurice D. Weir

Thomas' Calculus

14th EditionISBN: 9780134438986 (11 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir
10,142 solutions
Calculus: Early Transcendentals 8th Edition by James Stewart

Calculus: Early Transcendentals

8th EditionISBN: 9781285741550 (5 more)James Stewart
11,082 solutions
Calculus: Early Transcendentals 9th Edition by Daniel K. Clegg, James Stewart, Saleem Watson

Calculus: Early Transcendentals

9th EditionISBN: 9781337613927 (3 more)Daniel K. Clegg, James Stewart, Saleem Watson
11,045 solutions
Calculus for the AP Course 2nd Edition by Kathleen Miranda, Michael Sullivan

Calculus for the AP Course

2nd EditionISBN: 9781464142260 (2 more)Kathleen Miranda, Michael Sullivan
7,556 solutions

More related questions

1/4

1/7