Try Magic Notes and save time.Try it free
Try Magic Notes and save timeCrush your year with the magic of personalized studying.Try it free
Question

(a)Find a second-order homogeneous linear ODE for which the given functions are solutions. (b)Show linear independence by the Wronskian. (c)Solve the initial value problem.

xm1xm2y(1)=2y(1)=2m14m2x^{m_1}\text{, }x^{m_2}\text{, }y(1)=-2\text{, }y'(1)=2m_1-4m_2

Solution

Verified
Step 1
1 of 3

a)\color{#4257b2}{a)}

Since the given functions are solutions of the Euler-Cauchy equation

x2y+axy+by=0x^2y'' + axy' + by = 0

we obtain the roots of its auxiliary equation

λ2+(a1)λ+b=0\lambda ^2 + (a-1)\lambda + b = 0

λ1=m1λ2=m2\lambda _1 = m_1 \quad \wedge \quad \lambda _2 = m_2

The equation

(λm1)(λm2)=0    λ2(m1+m2)λ+m1m2=0(\lambda - m_1)(\lambda - m_2) = 0 \iff \lambda ^2 - (m_1 + m_2)\lambda + m_1 \cdot m_2 = 0

must be equal to

λ2+(a1)λ+b=0\lambda ^2 + (a-1)\lambda + b = 0

    a1=m1m2b=m1m2    a=1m1m2b=m1m2\begin{align*} & \implies a-1 = -m_1 - m_2 \quad \wedge \quad b = m_1m_2 \\ & \implies a= 1-m_1 - m_2 \quad \wedge \quad b = m_1m_2 \end{align*}

So, we obtain the ODE:

x2y+(1m1m2)xy+m1m2y=0{\color{#4257b2}{x^2y'' + (1- m_1 - m_2)xy' + m_1m_2y = 0}}

b)\color{#4257b2}{b)}

Let

y1=xm1y2=xm2.y_1 = x^{m_1} \quad \wedge \quad y_2 = x^{m_2}.

Let's calculate the Wronskian of this two functions.

W(y1,y2)=def.y1y2y1y2=y1y2y2y1=xm1(xm2)xm2(xm1)=xm1m2xm21+xm2m1xm11=m2xm1+m21+m1xm1+m21=xm1+m21(m2m1)0for  m2m1\begin{align*} {\color{#c34632}{W(y_1, y_2) }} & \overset{\textcolor{#c34632}{def.}}{=} {\color{#c34632}{\begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} }} \\ &= y_1 y'_2 - y_2y'_1 \\ & = x^{m_1} \cdot (x^{m_2})' - x^{m_2} \cdot (x^{m_1})' \\ & = x^{m_1} \cdot m_2 x^{m_2 - 1} + x^{m_2} m_1 x^{m_1 - 1}\\ & = m_2 x^{m_1+ m_2 -1} + m_1 x^{m_1+ m_2 -1} \\ & = x^{m_1+ m_2 -1} (m_2 - m_1) \neq 0 \quad \text{for} \; m_2 \neq m_1 \end{align*}

    \implies y1y_1 and y2y_2 are linearly independent\text{\color{#4257b2}{linearly independent}}.

Create an account to view solutions

Create an account to view solutions

Recommended textbook solutions

Advanced Engineering Mathematics 10th Edition by Erwin Kreyszig

Advanced Engineering Mathematics

10th EditionISBN: 9780470458365Erwin Kreyszig
4,134 solutions
Advanced Engineering Mathematics 9th Edition by Erwin Kreyszig

Advanced Engineering Mathematics

9th EditionISBN: 9780471488859Erwin Kreyszig
4,201 solutions
Advanced Engineering Mathematics 6th Edition by Dennis G. Zill

Advanced Engineering Mathematics

6th EditionISBN: 9781284105902 (6 more)Dennis G. Zill
5,294 solutions
Advanced Engineering Mathematics 7th Edition by Dennis G. Zill

Advanced Engineering Mathematics

7th EditionISBN: 9781284206241Dennis G. Zill
5,289 solutions

More related questions

1/4

1/7