Question
Find the series’ radius and interval of convergence. For what values of x does the series converge?
Solution
VerifiedAnswered 8 months ago
Answered 8 months ago
Step 1
1 of 3Let the given series be $\displaystyle\sum_{n=1}^{\infty} u_n = \displaystyle\sum_{n=1}^{\infty} n^nx^n$. Apply the Ratio Test to the series $\displaystyle\sum_{n=0}^{\infty} |u_n|$, where $u_n$ is the $nth$ term of the given power series. Now
$$\begin{align*}
\displaystyle \lim_{n \to \infty} \Big|\frac{u_{n+1}}{u_n} \Big|
= & \displaystyle \lim_{n \to \infty} \Big| \frac{(n+1)^{n+1}x^{n+1}}{ n^nx^n} \Big| \\
= & \displaystyle \lim_{n \to \infty} \Big| \frac{(n+1)^{n+1}x}{n^n} \Big| \\
= & |x|\displaystyle \lim_{n \to \infty} \Big( \frac{(n+1)^{n}(n+1)}{n^n} \Big) \\
= & |x|\displaystyle \lim_{n \to \infty} \Big( \Big(\frac{n+1}{n}\Big)^{n}(n+1) \Big) \\
= & |x|\Big(\displaystyle \lim_{n \to \infty} \left(1+\frac{1}{n}\right)^n \Big) \Big( \displaystyle\lim_{n \to \infty} (n+1) \Big) \\
= & e|x| \displaystyle\lim_{n \to \infty} (n+1) ,\quad \text{as } \lim_{n \to \infty} \left(1+\frac{1}{n}\right)^n=e
\end{align*}$$
Notice that if $x\neq 0$ then $e|x| \displaystyle\lim_{n \to \infty} (n+1) =\infty$. Also if $x=0$ then $|x| (e) \displaystyle\lim_{n \to \infty} (n+1) =0< 1$. Therefore the given series is absolutely convergence only if $x=0$.
Create an account to view solutions
By signing up, you accept Quizlet's Terms of Service and Privacy Policy
Create an account to view solutions
By signing up, you accept Quizlet's Terms of Service and Privacy Policy
Recommended textbook solutions

Thomas' Calculus
14th Edition•ISBN: 9780134438986 (6 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir10,143 solutions

Calculus: Early Transcendentals
10th Edition•ISBN: 9780470647691Howard Anton, Irl C. Bivens, Stephen Davis10,488 solutions

Calculus: Early Transcendentals
8th Edition•ISBN: 9781285741550 (1 more)James Stewart11,083 solutions

Calculus: Early Transcendentals
9th Edition•ISBN: 9781337613927 (1 more)Daniel K. Clegg, James Stewart, Saleem Watson11,050 solutions
More related questions
1/4
1/7