Try Magic Notes and save time.Try it free
Try Magic Notes and save timeCrush your year with the magic of personalized studying.Try it free
Question

Find the series’ radius and interval of convergence. For what values of x does the series converge?

n=1nnxn\sum _ { n = 1 } ^ { \infty } n ^ { n } x ^ { n }

Solution

Verified
Answered 8 months ago
Answered 8 months ago
Step 1
1 of 3
Let the given series be $\displaystyle\sum_{n=1}^{\infty} u_n = \displaystyle\sum_{n=1}^{\infty} n^nx^n$. Apply the Ratio Test to the series $\displaystyle\sum_{n=0}^{\infty} |u_n|$, where $u_n$ is the $nth$ term of the given power series. Now $$\begin{align*} \displaystyle \lim_{n \to \infty} \Big|\frac{u_{n+1}}{u_n} \Big| = & \displaystyle \lim_{n \to \infty} \Big| \frac{(n+1)^{n+1}x^{n+1}}{ n^nx^n} \Big| \\ = & \displaystyle \lim_{n \to \infty} \Big| \frac{(n+1)^{n+1}x}{n^n} \Big| \\ = & |x|\displaystyle \lim_{n \to \infty} \Big( \frac{(n+1)^{n}(n+1)}{n^n} \Big) \\ = & |x|\displaystyle \lim_{n \to \infty} \Big( \Big(\frac{n+1}{n}\Big)^{n}(n+1) \Big) \\ = & |x|\Big(\displaystyle \lim_{n \to \infty} \left(1+\frac{1}{n}\right)^n \Big) \Big( \displaystyle\lim_{n \to \infty} (n+1) \Big) \\ = & e|x| \displaystyle\lim_{n \to \infty} (n+1) ,\quad \text{as } \lim_{n \to \infty} \left(1+\frac{1}{n}\right)^n=e \end{align*}$$ Notice that if $x\neq 0$ then $e|x| \displaystyle\lim_{n \to \infty} (n+1) =\infty$. Also if $x=0$ then $|x| (e) \displaystyle\lim_{n \to \infty} (n+1) =0< 1$. Therefore the given series is absolutely convergence only if $x=0$.

Create an account to view solutions

Create an account to view solutions

Recommended textbook solutions

Thomas' Calculus 14th Edition by Christopher E Heil, Joel R. Hass, Maurice D. Weir

Thomas' Calculus

14th EditionISBN: 9780134438986 (6 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir
10,143 solutions
Calculus: Early Transcendentals 10th Edition by Howard Anton, Irl C. Bivens, Stephen Davis

Calculus: Early Transcendentals

10th EditionISBN: 9780470647691Howard Anton, Irl C. Bivens, Stephen Davis
10,488 solutions
Calculus: Early Transcendentals 8th Edition by James Stewart

Calculus: Early Transcendentals

8th EditionISBN: 9781285741550 (1 more)James Stewart
11,083 solutions
Calculus: Early Transcendentals 9th Edition by Daniel K. Clegg, James Stewart, Saleem Watson

Calculus: Early Transcendentals

9th EditionISBN: 9781337613927 (1 more)Daniel K. Clegg, James Stewart, Saleem Watson
11,050 solutions

More related questions

1/4

1/7