## Related questions with answers

Question

Find the series’ radius and interval of convergence. For what values of x does the series converge?

$\sum _ { n = 1 } ^ { \infty } n ^ { n } x ^ { n }$

Solution

VerifiedAnswered 8 months ago

Answered 8 months ago

Step 1

1 of 3Let the given series be $\displaystyle\sum_{n=1}^{\infty} u_n = \displaystyle\sum_{n=1}^{\infty} n^nx^n$. Apply the Ratio Test to the series $\displaystyle\sum_{n=0}^{\infty} |u_n|$, where $u_n$ is the $nth$ term of the given power series. Now
$$\begin{align*}
\displaystyle \lim_{n \to \infty} \Big|\frac{u_{n+1}}{u_n} \Big|
= & \displaystyle \lim_{n \to \infty} \Big| \frac{(n+1)^{n+1}x^{n+1}}{ n^nx^n} \Big| \\
= & \displaystyle \lim_{n \to \infty} \Big| \frac{(n+1)^{n+1}x}{n^n} \Big| \\
= & |x|\displaystyle \lim_{n \to \infty} \Big( \frac{(n+1)^{n}(n+1)}{n^n} \Big) \\
= & |x|\displaystyle \lim_{n \to \infty} \Big( \Big(\frac{n+1}{n}\Big)^{n}(n+1) \Big) \\
= & |x|\Big(\displaystyle \lim_{n \to \infty} \left(1+\frac{1}{n}\right)^n \Big) \Big( \displaystyle\lim_{n \to \infty} (n+1) \Big) \\
= & e|x| \displaystyle\lim_{n \to \infty} (n+1) ,\quad \text{as } \lim_{n \to \infty} \left(1+\frac{1}{n}\right)^n=e
\end{align*}$$
Notice that if $x\neq 0$ then $e|x| \displaystyle\lim_{n \to \infty} (n+1) =\infty$. Also if $x=0$ then $|x| (e) \displaystyle\lim_{n \to \infty} (n+1) =0< 1$. Therefore the given series is absolutely convergence only if $x=0$.

## Create an account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy

## Create an account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy

## Recommended textbook solutions

#### Thomas' Calculus

14th Edition•ISBN: 9780134438986 (6 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir10,143 solutions

#### Calculus: Early Transcendentals

10th Edition•ISBN: 9780470647691Howard Anton, Irl C. Bivens, Stephen Davis10,488 solutions

#### Calculus: Early Transcendentals

8th Edition•ISBN: 9781285741550 (1 more)James Stewart11,083 solutions

#### Calculus: Early Transcendentals

9th Edition•ISBN: 9781337613927 (1 more)Daniel K. Clegg, James Stewart, Saleem Watson11,050 solutions

## More related questions

1/4

1/7