Related questions with answers


A furnace for processing semiconductor materials is formed by a silicon carbide chamber that is zone-heated on the top section and cooled on the lower section. With the elevator in the lowest position, a robot arm inserts the silicon wafer on the mounting pins. In a production operation, the wafer is rapidly moved toward the hot zone to achieve the temperature-time history required for the process recipe. In this position, the top and bottom surfaces of the wafer exchange radiation with the hot and cool zones, respectively, of the chamber. The zone temperatures are Th=1500KT_{h}=1500 \mathrm{K} and Tc=330KT_{c}=330 \mathrm{K}, and the emissivity and thickness of the wafer are ε=0.65\varepsilon=0.65 and d=0.78 mm, respectively. With the ambient gas at T=700KT_{\infty}=700 \mathrm{K}, convection coefficients at the upper and lower surfaces of the wafer are 8 and 4W/m2K4 \mathrm{W} / \mathrm{m}^{2} \cdot \mathrm{K}, respectively. The silicon wafer has a density of 2700kg/m32700 \mathrm{kg} / \mathrm{m}^{3} and a specific heat of 875J/kgK875 \mathrm{J} / \mathrm{kg} \cdot \mathrm{K}. (a) For an initial condition corresponding to a wafer temperature of Tw,i=300KT_{w, i}=300 \mathrm{K} and the position of the wafer shown schematically, determine the corresponding time rate of change of the wafer temperature, (dTw/dt)i\left(d T_{w} / d t\right)_{i}. (b) Determine the steady-state temperature reached by the wafer if it remains in this position. How significant is convection heat transfer for this situation? Sketch how you would expect the wafer temperature to vary as a function of vertical distance.


Step 1
1 of 3
  • hot zone temperature Th=1500T_h = 1500K
  • cold zone temperature Tc=330T_c = 330K
  • wafer thickness ϵ=0.65\epsilon = 0.65
  • wafer thickness d=0.78d=0.78mm
  • ambient gas temperature T=700T_\infty = 700K
  • upper and lower surface convection factors hu=8hl=4h_u = 8 h_l = 4W/m2^2K
  • silicon wafer density ρ=2700\rho = 2700kg/m3^3
  • silicon wafer specific heat cp=875c_p = 875J/kgK
  • initial wafer temperature Tw,i=300T_{w,i}=300K

Set up energy equation for wafer over time:

E˙inE˙out=E˙stqrad,h+qrad,cqconv,u+qconv,l=mcpdTdtϵσ[(Tsur,h4Tw4)+(Tsur,c4Tw4)[hu(TwT)+hl(TwT)]=ρcpddTdt\begin{align*} \dot{E}_{in}'' - \dot{E}_{out}'' &= \dot{E}_{st}''\\ q_{rad,h}''+q_{rad,c}''-&q_{conv,u}''+q_{conv,l}''=mc_p\frac{dT}{dt}\\ \epsilon \sigma[(T_{sur,h}^4-T_w^4&)+(T_{sur,c}^4-T_w^4)-[h_u(T_w-T_\infty)+h_l(T_w-T_\infty)]= \rho c_p d \frac{dT}{dt} \end{align*}

a)\textbf{a)}Initial condition for this case is Tw=300T_w=300K:

0.655.67108[(150043004)+(33043004)[8(300700)+4(300700)]=27008750.78103dTdtdTdt=0.655.67108[(150043004)+(33043004)[8(300700)+4(300700)]27008750.78103dTdt=103.78K/s\begin{align*} &0.65 \cdot 5.67 \cdot 10^{-8}[(1500^4-300^4)+(330^4-300^4)-[8(300-700)+4(300-700)]\\ &=2700 \cdot 875 \cdot 0.78 \cdot 10^{-3} \frac{dT}{dt}\\ \\ \rightarrow &\frac{dT}{dt} = \frac{0.65 \cdot 5.67 \cdot 10^{-8}[(1500^4-300^4)+(330^4-300^4)-[8(300-700)+4(300-700)]}{2700 \cdot 875 \cdot 0.78 \cdot 10^{-3}}\\ &\frac{dT}{dt} = 103.78 \text{K/s} \end{align*}

b)\textbf{b)} In this steady-state case it is possible to neglect energy stored:

ϵσ[(Tsur,h4Tw4)+(Tsur,c4Tw4)[hu(TwT)+hl(TwT)]=00.655.67108[(15004Tw,b4)+(3304Tw,b4)[8(Tw,b700)+4(Tw,b700)]Tw,b=1250.78K\begin{align*} &\epsilon \sigma[(T_{sur,h}^4-T_w^4)+(T_{sur,c}^4-T_w^4)-[h_u(T_w-T_\infty)+h_l(T_w-T_\infty)]=0\\ &0.65 \cdot 5.67 \cdot 10^{-8}[(1500^4-T_{w,b}^4)+(330^4-T_{w,b}^4)-[8(T_{w,b}-700)+4(T_{w,b}-700)] \rightarrow &T_{w,b}= 1250.78\text{K} \end{align*}

If we ignore convection heat transfer, temperature would only rise by about 11K which is insignificant at this value.

Create an account to view solutions

Create an account to view solutions

Recommended textbook solutions

Fundamentals of Electric Circuits 6th Edition by Charles Alexander, Matthew Sadiku

Fundamentals of Electric Circuits

6th EditionISBN: 9780078028229 (4 more)Charles Alexander, Matthew Sadiku
2,120 solutions
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics 4th Edition by Randall D. Knight

Physics for Scientists and Engineers: A Strategic Approach with Modern Physics

4th EditionISBN: 9780133942651Randall D. Knight
3,508 solutions
Advanced Engineering Mathematics 10th Edition by Erwin Kreyszig

Advanced Engineering Mathematics

10th EditionISBN: 9780470458365 (4 more)Erwin Kreyszig
4,134 solutions
Fundamentals of Heat and Mass Transfer 7th Edition by Adrienne S Lavine, David P. Dewitt, Frank P. Incropera, Theodore L. Bergman

Fundamentals of Heat and Mass Transfer

7th EditionISBN: 9780470501979 (3 more)Adrienne S Lavine, David P. Dewitt, Frank P. Incropera, Theodore L. Bergman
1,506 solutions

More related questions