Try the fastest way to create flashcards
Question

(a) If

A=[1101]A = \left[ \begin{array} { l l } { 1 } & { 1 } \\ { 0 } & { 1 } \end{array} \right]

, show that

U1AUU ^ { - 1 } A U

is not diagonal for any invertible complex matrix U. (b) If

A=[0110]A = \left[ \begin{array} { l l } { 0 } & { 1 } \\ { - 1 } & { 0 } \end{array} \right]

, show that

U1AUU ^ { - 1 } A U

is not upper triangular for any real invertible matrix U.

Solution

Verified
Step 1
1 of 3

(a)\pmb{(a)} Let

U=[a+ibc+ide+ifg+ih]U=\begin{bmatrix}a+ib & c+id\\e+if & g+ih\end{bmatrix}

be an invertible complex matrix, and let's assume that

U1AU=D=[x00y]U^{-1}AU=D=\begin{bmatrix}x & 0\\0 & y\end{bmatrix}

is a diagonal matrix. Therefore, we get the following.

U1AU=D    AU=UD    [1101][a+ibc+ide+ifg+ih]=[a+ibc+ide+ifg+ih][x00y]()    [(a+e)+(b+f)i(c+g)+(d+h)ie+ifg+ih]=[(a+ib)x(c+id)y(e+if)x(g+ih)y]    e+if=(e+if)xg+ih=(g+ih)y    x=1y=1    ()(a+e)+(b+f)i=a+ib(c+g)+(d+h)i=c+id    e+if=0g+ih=0    U=[a+ibc+id00]    det(U)=0    U is not an invertible matrix\begin{align*} U^{-1}AU=D&\implies AU=UD\\\\ &\implies \begin{bmatrix}1 & 1\\0 & 1\end{bmatrix}\begin{bmatrix}a+ib & c+id\\e+if & g+ih\end{bmatrix}=\begin{bmatrix}a+ib & c+id\\e+if & g+ih\end{bmatrix}\begin{bmatrix}x & 0\\0 & y\end{bmatrix}\\\\ \pmb{(*)}&\implies \begin{bmatrix}(a+e)+(b+f)i & (c+g)+(d+h)i\\e+if & g+ih\end{bmatrix}=\begin{bmatrix}(a+ib)x & (c+id)y\\(e+if)x & (g+ih)y\end{bmatrix}\\\\ &\implies e+if=(e+if)x\quad\land\quad g+ih=(g+ih)y\\\\ &\implies x=1\quad\land\quad y=1\\\\ &\stackrel{\pmb{(*)}}{\implies}(a+e)+(b+f)i=a+ib\quad\land\quad (c+g)+(d+h)i=c+id\\\\ &\implies e+if=0\quad\land\quad g+ih=0\\\\ &\implies U=\begin{bmatrix}a+ib & c+id\\0 & 0\end{bmatrix}\\\\ &\implies \det(U)=0\\\\ &\implies\pmb{\text{$U$ is not an invertible matrix}} \end{align*}

This is a contradiction, and therefore there is no invertible complex matrix UU such that U1AUU^{-1}AU is a diagonal matrix.

Create a free account to view solutions

Create a free account to view solutions

Recommended textbook solutions

Linear Algebra and Its Applications 5th Edition by David C. Lay, Judi J. McDonald, Steven R. Lay

Linear Algebra and Its Applications

5th EditionISBN: 9780321982384 (3 more)David C. Lay, Judi J. McDonald, Steven R. Lay
2,070 solutions
Elementary Linear Algebra 11th Edition by Howard Anton

Elementary Linear Algebra

11th EditionISBN: 9781118473504Howard Anton
2,932 solutions
Elementary Linear Algebra 12th Edition by Anton Kaul, Howard Anton

Elementary Linear Algebra

12th EditionISBN: 9781119406778Anton Kaul, Howard Anton
3,078 solutions
Linear Algebra with Applications 7th Edition by W. Keith Nicholson

Linear Algebra with Applications

7th EditionISBN: 9781259066405W. Keith Nicholson
1,185 solutions

More related questions

1/4

1/7