Try the fastest way to create flashcards
Question

(a) Let f:R3R,x0R3f :\mathbb{R}^3 \to \mathbb{R}, \mathbf{x}_0 \in \mathbb{R}^3. If v\mathbf{v} is a unit vector in R3\mathbb{R}^3, show that the maximum value of the directional derivative of ff at x0\mathbf{x}_0 along v\mathbf{v} is f(x0)||\nabla f (\mathbf{x}_0)||.

Solution

Verified
Step 1
1 of 3

Create a free account to view solutions

Create a free account to view solutions

Recommended textbook solutions

Thomas' Calculus 14th Edition by Christopher E Heil, Joel R. Hass, Maurice D. Weir

Thomas' Calculus

14th EditionISBN: 9780134438986 (11 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir
10,142 solutions
Calculus: Early Transcendentals 8th Edition by James Stewart

Calculus: Early Transcendentals

8th EditionISBN: 9781285741550 (6 more)James Stewart
11,085 solutions
Calculus: Early Transcendentals 9th Edition by Daniel K. Clegg, James Stewart, Saleem Watson

Calculus: Early Transcendentals

9th EditionISBN: 9781337613927 (1 more)Daniel K. Clegg, James Stewart, Saleem Watson
11,050 solutions
Vector Calculus 6th Edition by Anthony Tromba, Jerrold E. Marsden

Vector Calculus

6th EditionISBN: 9781429215084 (2 more)Anthony Tromba, Jerrold E. Marsden
1,472 solutions

More related questions

1/4

1/7