Question

A particle of mass m has the wave function Ψ(x,t)=Aea[(mx2/)+it]\Psi(x, t)=A e^{-a\left[\left(m x^{2} / \hbar\right)+i t\right]}, where A and a are positive real constants. (a) Find A. (b) For what potential energy function, V(x), is this a solution to the Schrödinger equation? (c) Calculate the expectation values of x, x2x^{2}, p, and p2p^{2}. (d) Find σx\sigma_{x} and σp\sigma_{p}. Is their product consistent with the uncertainty principle?

Solution

Verified
Step 1
1 of 6

ψ(x,t)=Aea(mx2+it)ψ(x,t)=Aea(mx2it)\begin{align*} \psi (x,t) = A e^{-a\left( \frac{mx^{2}}{\hbar} + it\right)}\\ \psi^{*} (x,t) = A e^{-a\left( \frac{mx^{2}}{\hbar} - it\right)} \end{align*}

Disclamer: If AA was a complex number, then in ψ(x,t)\psi^{*} (x,t) we would have AA^{*}.

To find AA we need to normalize\textbf{normalize} the wave function ψ(x,t)\psi (x,t):

1=ψ(x,t)2dx=ψ(x,t)ψ(x,t)dx=Aea(mx2it)Aea(mx2+it)dx=A2e2amx2dx\begin{align*} 1 &= \int_{-\infty}^{\infty} \left| \psi \left( x,t \right) \right| ^{2}dx \\ &= \int_{-\infty}^{\infty} \psi^{*} \left( x,t \right)\psi \left( x,t \right) dx \\ & = \int_{-\infty}^{\infty} A e^{-a\left( \frac{mx^{2}}{\hbar} - it\right)} A e^{-a\left( \frac{mx^{2}}{\hbar} + it\right)} dx \\ & = A^{2} \int_{-\infty}^{\infty} e^{\frac{-2amx^{2}}{\hbar} } dx \end{align*}

Integrals in form ekx2dx\int_{-\infty}^{\infty} e^{-kx^{2}} dx for k>0k>0 have solution πk\sqrt{\frac{\pi}{k}}.

In comparison to previous formula k=2amk=\frac{2am}{\hbar}. It follows:

A2π2am=1A2=2amπA=(2amπ)14\begin{align*} A^{2}\sqrt{\dfrac{\pi \hbar}{2am}}=1\\ A^2=\sqrt{\dfrac{2am}{\pi \hbar}} \\ \boxed{A=\left( \dfrac{2am}{\pi \hbar} \right)^{\frac{1}{4}}} \end{align*}

Create an account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy
Continue with GoogleContinue with Facebook

Create an account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy
Continue with GoogleContinue with Facebook

Recommended textbook solutions

Physics for Scientists and Engineers: A Strategic Approach with Modern Physics 4th Edition by Randall D. Knight

Physics for Scientists and Engineers: A Strategic Approach with Modern Physics

4th EditionISBN: 9780133942651 (5 more)Randall D. Knight
3,508 solutions
Introduction to Quantum Mechanics 3rd Edition by Darrell F. Schroeter, David J. Griffiths

Introduction to Quantum Mechanics

3rd EditionISBN: 9781107189638 (3 more)Darrell F. Schroeter, David J. Griffiths
485 solutions
Physics for Scientists and Engineers 9th Edition by John W. Jewett, Raymond A. Serway

Physics for Scientists and Engineers

9th EditionISBN: 9781133947271 (2 more)John W. Jewett, Raymond A. Serway
6,057 solutions
Classical Mechanics 1st Edition by John R. Taylor

Classical Mechanics

1st EditionISBN: 9781891389221 (5 more)John R. Taylor
741 solutions

More related questions

1/4

1/7