Related questions with answers

 The volume of a right-circular cylinder of radius r and  height h is V=πr2h . Suppose the radius and height of the  cylinder are changing with respect to time t . \begin{array} { l } { \text { The volume of a right-circular cylinder of radius } r \text { and } } \\ { \text { height } h \text { is } V = \pi r ^ { 2 } h \text { . Suppose the radius and height of the } } \\ { \text { cylinder are changing with respect to time } t \text { . } } \end{array}

 a. Find a relationship between dV/dt,dr/dt, and dh/dt .  b. At a certain instant of time, the radius and height of the  cylinder are 2 and 6 in. and are increasing at the rate of  0.1 and 0.3 in./sec, respectively. How fast is the volume  of the cylinder increasing? \begin{array} { l } { \text { a. Find a relationship between } d V / d t , d r / d t , \text { and } d h / d t \text { . } } \\ { \text { b. At a certain instant of time, the radius and height of the } } \\ \quad { \text { cylinder are } 2 \text { and } 6 \text { in. and are increasing at the rate of } } \\ \quad \text{ }{ 0.1 \text { and } 0.3 \text { in.} / \text {sec, respectively. How fast is the volume } } \\ \quad { \text { of the cylinder increasing? } } \end{array}

Question

A person with a mass of 81 kg81 \mathrm{~kg} and a volume of 0.089 m30.089 \mathrm{~m}^3 floats quietly in water. If an upward force FF is applied to the person by a friend, the volume of the person above water increases by 0.0018 m30.0018 \mathrm{~m}^3. Find the force FF.

Solution

Verified
Answered 1 year ago
Answered 1 year ago
Step 1
1 of 2

(b.)\textcolor{#c34632}{(b.)} Calculate the upward force FF applied to the person at which the volume of the person of above increases by 0.0018 m30.0018\text{ m}^3.

The force applied is then:

Fapp=ρwgΔVabove(1)F_\text{app} = \rho_w g \Delta V_\text{above} \tag{1}

Entering known values to equation (1), we obtain FappF_\text{app} as

Fapp=(1000 kgm3)(9.81 ms2)(0.0018 m3)=17.66 N\begin{aligned} F_\text{app} & = \left(1000\mathrm{~\dfrac{kg}{m^3}}\right) \left(9.81\mathrm{~\dfrac{m}{s^2}}\right) (0.0018\text{ m}^3)\\ & = 17.66 \text{ N} \end{aligned}

Fapp=17.66 N\boxed{\therefore F_\text{app} = 17.66 \text{ N} }

Create an account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy
Continue with GoogleContinue with Facebook

Create an account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy
Continue with GoogleContinue with Facebook

More related questions

1/4

1/7