Question

A software development department consists of 6 women and 4 men. (A) How many ways can the department select a chief programmer, a backup programmer, and a programming librarian? (B) How many of the selections in part (A) consist entirely of women? (C) How many ways can the department select a team of 3 programmers to work on a particular project?

Solution

Verified
Step 1
1 of 2

(A)\textbf{(A)} As order of selection is relevant, therefore selection is a permutation.

Number of ways to select a chief programmer, a backup programmer, and a programming librarian is:

10P3=10!(103)!=10987!7!=1098=1072=720\begin{align*} _{10}P_3&=\dfrac{10!}{(10-3)!}\\ &=\dfrac{10 \cdot 9 \cdot 8 \cdot \cancel{7!}}{\cancel{7!}}\\ &= 10 \cdot 9 \cdot 8\\ &= 10 \cdot 72\\ &=\textcolor{#4257b2}{720} \end{align*}

(B)\textbf{(B)} As order of selection is relevant, therefore selection is a permutation.

Number of ways to select only women as a chief programmer, a backup programmer, and a programming librarian is:

6P3=6!(63)!=6543!3!=654=620=120\begin{align*} _{6}P_3&=\dfrac{6!}{(6-3)!}\\ &=\dfrac{6 \cdot 5 \cdot 4 \cdot \cancel{3!}}{\cancel{3!}}\\ &= 6 \cdot 5 \cdot 4\\ &= 6 \cdot 20\\ &=\textcolor{#4257b2}{120} \end{align*}

(C)\textbf{(C)} As order of selection is irrelevant, therefore selection is a combination.

Number of ways to select 3 programmers is:

10C3=10!3!(103)!=10987!3!7!=103324321=1034=1012=120\begin{align*} _{10}C_3&=\dfrac{10!}{3!(10-3)!}\\ &=\dfrac{10 \cdot 9 \cdot 8 \cdot \cancel{7!}}{3! \cdot \cancel{7!}}\\ &= \dfrac{10 \cdot \cancel{3} \cdot 3 \cdot \cancel{2} \cdot 4}{\cancel{3} \cdot \cancel{2} \cdot 1}\\ &= 10 \cdot 3 \cdot 4\\ &= 10 \cdot 12\\ &=\textcolor{#4257b2}{120} \end{align*}

Create an account to view solutions

Create an account to view solutions

Recommended textbook solutions

Finite Mathematics for Business, Economics, Life Sciences, and Social Sciences 14th Edition by Christopher J. Stocker, Karl E. Byleen, Michael R. Ziegler, Raymond A. Barnett

Finite Mathematics for Business, Economics, Life Sciences, and Social Sciences

14th EditionISBN: 9780134675985Christopher J. Stocker, Karl E. Byleen, Michael R. Ziegler, Raymond A. Barnett
3,808 solutions
Finite Mathematics 11th Edition by Margaret L. Lial, Nathan P. Ritchey, Raymond N. Greenwell

Finite Mathematics

11th EditionISBN: 9780321979438Margaret L. Lial, Nathan P. Ritchey, Raymond N. Greenwell
3,566 solutions
Mathematical Excursions 3rd Edition by Daniel K. Clegg, Joanne Lockwood, Richard D. Nation, Richard N. Aufmann

Mathematical Excursions

3rd EditionISBN: 9781111578497 (3 more)Daniel K. Clegg, Joanne Lockwood, Richard D. Nation, Richard N. Aufmann
4,865 solutions
Mathematical Excursions 4th Edition by Daniel K. Clegg, Joanne Lockwood, Richard D. Nation, Richard N. Aufmann

Mathematical Excursions

4th EditionISBN: 9781305965584Daniel K. Clegg, Joanne Lockwood, Richard D. Nation, Richard N. Aufmann
4,593 solutions

More related questions

1/4

1/7