Question

An important derivative operation in many applications is called the Laplacian; in Cartesian coordinates, for z=f(x, y), the Laplacian is

zxx+zyyz _ { x x } + z _ { y y }

. Determine the Laplacian in polar coordinates using the following steps. Use the Chain Rule to find

zxx=x(zx)z _ { x x } = \frac { \partial } { \partial x } \left( z _ { x } \right)

. There should be two major terms, which, when expanded and simplified, result in five terms.

Solution

Verified
Step 1
1 of 2

Using that

rx=xx2+y2=xr,θx=yx2+y2=yr2\begin{align*}r_x=\dfrac{x}{\sqrt{x^2+y^2}}=\dfrac{x}{r},\theta_x=-\dfrac{y}{x^2+y^2}=-\dfrac{y}{r^2}\end{align*}

we obtain

zxx=x(zx)=x(xrzryr2)=x(xrzr)x(yr2zθ)=(x(xr)zr+xrx(zr))x(xrzr)(x(yr2)rθ+yr2x(rθ))x(yr2zθ)(Product Rule)=x(xx2+y2)zr+xr(r(zr)rx+θ(zr)θx)x(yx2+y2)rθyr2(r(rθ)rx+θ(rθ)θx)=x2+y2x2x2+y2x2+y2zr+xr(zrrxrzθryr2)+2xy(x2+y2)2rθyr2(zrθxrrθθyr2)=x2r2zrr+y2z4rθθ2xyr3zrθ+y2r3zr+2xyr4rθ\begin{align*}z_{xx}&=\dfrac{\partial}{\partial x}(z_x)=\dfrac{\partial}{\partial x}\left(\dfrac{x}{r}z_r-\dfrac{y}{r^2}\right)=\dfrac{\partial}{\partial x}\left(\dfrac{x}{r}z_r\right)-\dfrac{\partial}{\partial x}\left(\dfrac{y}{r^2}z_{\theta}\right)\\&= \underbrace{\left(\dfrac{\partial}{\partial x}\left(\dfrac{x}{r}\right)z_r+\dfrac{x}{r}\dfrac{\partial}{\partial x}(z_r)\right)}_{\color{#4257b2}\dfrac{\partial}{\partial x}\left(\dfrac{x}{r}z_r\right)}-\underbrace{\left(\dfrac{\partial}{\partial x}\left(\dfrac{y}{r^2}\right)r_{\theta}+\dfrac{y}{r^2}\dfrac{\partial}{\partial x}(r_{\theta})\right)}_{\color{#4257b2}\dfrac{\partial}{\partial x}\left(\dfrac{y}{r^2}z_{\theta}\right)}\hspace{2cm}\text{\color{#4257b2}(Product Rule)}\\& =\dfrac{\partial}{\partial x}\left(\dfrac{x}{\sqrt{x^2+y^2}}\right)z_r+\dfrac{x}{r}\left(\dfrac{\partial}{\partial r}(z_r)\dfrac{\partial r}{\partial x}+\dfrac{\partial}{\partial \theta}(z_r)\dfrac{\partial\theta}{\partial x}\right)\\&\hspace{5cm}-\dfrac{\partial}{\partial x}\left(\dfrac{y}{x^2+y^2}\right)r_{\theta}-\dfrac{y}{r^2}\left(\dfrac{\partial}{\partial r}(r_{\theta})\dfrac{\partial r}{\partial x}+\dfrac{\partial}{\partial \theta}(r_{\theta})\dfrac{\partial\theta}{\partial x}\right)\\&= \dfrac{\sqrt{x^2+y^2}-\dfrac{x^2}{\sqrt{x^2+y^2}}}{x^2+y^2}z_r+\dfrac{x}{r}\left(z_{rr}\dfrac{x}{r}-z_{\theta r}\dfrac{y}{r^2}\right)+\dfrac{2xy}{(x^2+y^2)^2}r_{\theta}-\dfrac{y}{r^2}\left(z_{r\theta}\dfrac{x}{r}-r_{\theta\theta}\dfrac{y}{r^2}\right)\\&=\dfrac{x^2}{r^2}z_{rr}+\dfrac{y^2}{z^4}r_{\theta\theta}-\dfrac{2xy}{r^3}z_{r\theta}+\dfrac{y^2}{r^3}z_r+\dfrac{2xy}{r^4}r_{\theta}\end{align*}

Hence

zxx=x2r2zrr+y2z4rθθ2xyr3zrθ+y2r3zr+2xyr4rθ\begin{align*}\color{#c34632}\boxed{z_{xx}=\dfrac{x^2}{r^2}z_{rr}+\dfrac{y^2}{z^4}r_{\theta\theta}-\dfrac{2xy}{r^3}z_{r\theta}+\dfrac{y^2}{r^3}z_r+\dfrac{2xy}{r^4}r_{\theta}}\end{align*}

Create an account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy
Continue with GoogleContinue with Facebook

Create an account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy
Continue with GoogleContinue with Facebook

Recommended textbook solutions

Calculus: Early Transcendentals 3rd Edition by Bernard Gillett, Eric Schulz, Lyle Cochran, William L. Briggs

Calculus: Early Transcendentals

3rd EditionISBN: 9780134763644Bernard Gillett, Eric Schulz, Lyle Cochran, William L. Briggs
13,405 solutions
Calculus: Early Transcendentals 7th Edition by James Stewart

Calculus: Early Transcendentals

7th EditionISBN: 9780538497909 (3 more)James Stewart
10,080 solutions
Calculus: Early Transcendentals 8th Edition by James Stewart

Calculus: Early Transcendentals

8th EditionISBN: 9781285741550 (5 more)James Stewart
11,082 solutions
Calculus: Early Transcendentals 9th Edition by Daniel K. Clegg, James Stewart, Saleem Watson

Calculus: Early Transcendentals

9th EditionISBN: 9781337613927Daniel K. Clegg, James Stewart, Saleem Watson
11,049 solutions

More related questions

1/4

1/7