Related questions with answers
An RC series circuit consists of an AC source, a $33.0  \mu \text F$ capacitor, and a 30.0$\Omega$ resistor. If the source emf is given by $\varepsilon = \varepsilon_ { max } \sin ( \omega t )$, where $E _ { \max } = 180.0 \mathrm { V }$ and $\omega = 20.0 \mathrm { s } ^ {  1 }$, what is the current amplitude?
Solutions
VerifiedInformation
In the exercise we have a circuit with a capacitor and a resistor in series and we need to find the current amplitude $I$ with the next information:

$C=6.00\,\text{mF}$, Capacitance of the capacitor,

$R=20.0\,\Omega$, Resistance of the resistor,

$\xi=\xi_{\text{max}}\sin(\omega t)$, emf of the AC source,

$\xi_{\text{max}}=5.00\,\text{V}$, Maximum value of emf,

$\omega=10.0\,\text{s}^{1}$, Angular frequency.
We are asked to determine the current amplitude $I_max$ in the $RC$ circuit if the given values are:
$\begin{align*} C&=6.00\mathrm{mF}\\ R&=20.0\Omega\\ \varepsilon_{max}&=5.00V\\ \omega&=10.0s^{1}\\ \end{align*}$
Create a free account to view solutions
Create a free account to view solutions
Recommended textbook solutions
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics
4th Edition•ISBN: 9780133942651 (8 more)Randall D. KnightMathematical Methods in the Physical Sciences
3rd Edition•ISBN: 9780471198260 (1 more)Mary L. BoasFundamentals of Physics
10th Edition•ISBN: 9781118230718 (3 more)David Halliday, Jearl Walker, Robert ResnickMore related questions
1/4
1/7