Try the fastest way to create flashcards
Question

Angle A is acute. If If tanA=12\tan A=\frac{1}{2}, find cos 2 A and tan 2 A.

Solution

Verified
1.8 (5 ratings)
Answered 2 years ago
1.8 (5 ratings)
Answered 2 years ago
Step 1
1 of 2

Using formulas:\\\\sin2A=2sinAcosA\sin 2A=2\sin A\cos A\\$\cos 2A=1-2\sin^2A=

=1-2\cdot (513\dfrac{5}{13})^2=

=1-2\cdot 25169\dfrac{25}{169}=

=119169Nowtrytofind\dfrac{119}{169}\\\\\\ Now try to find\cos Asowecanfinishtheworkforso we can finish the work for\sin 2A::\\\\\cos 2A=2\cos^2A-1

119169\dfrac{119}{169}=2\cos^2A-1

\cos^2A=144169\dfrac{144}{169}

\cos A=\pm144169\sqrt{\dfrac{144}{169}}=\pm1213\dfrac{12}{13} Since\\\\ Since\angle Aisacute,is acute,\cos A=+1213.\dfrac{12}{13}.\\\\\\\sin 2A=2\cdot 513\dfrac{5}{13}\cdot 1213\dfrac{12}{13}=$$\dfrac{120}{169}$

Double-Angle and Half-Angle Formulas:\\\\ 1)sin2α=2sinαcosα\sin 2\alpha=2\sin \alpha\cos \alpha\\ 2)$\cos 2\alpha=\cos^2\alpha-\sin^2\alpha=

=1-2\sin^2\alpha=2\cos^2\alpha-1 3)\\\\ 3)\tan 2\alpha=2tanα1tan2α4)\dfrac{2\tan \alpha}{1-\tan^2\alpha}\\\\ 4)\sinα2\dfrac{\alpha}{2}=\pm1cosα25)\sqrt{\dfrac{1-\cos\alpha}{2}}\\\\ 5)\cosα2\dfrac{\alpha}{2}=\pm1+cosα26)\sqrt{\dfrac{1+\cos\alpha}{2}}\\\\ 6)\tanα2\dfrac{\alpha}{2}=\pm1cosα1+cosα\sqrt{\dfrac{1-\cos\alpha}{1+\cos\alpha}}=sinα1+cosα\dfrac{\sin\alpha}{1+\cos\alpha}=$$\dfrac{1-\cos\alpha}{\sin\alpha}$

Create a free account to view solutions

Create a free account to view solutions

Recommended textbook solutions

enVision Algebra 2 1st Edition by Al Cuoco

enVision Algebra 2

1st EditionISBN: 9780328931590 (1 more)Al Cuoco
3,573 solutions
Precalculus: Mathematics for Calculus 7th Edition by James Stewart, Lothar Redlin, Saleem Watson

Precalculus: Mathematics for Calculus

7th EditionISBN: 9781305253810James Stewart, Lothar Redlin, Saleem Watson
Big Ideas Math Algebra 2: A Common Core Curriculum 1st Edition by Boswell, Larson

Big Ideas Math Algebra 2: A Common Core Curriculum

1st EditionISBN: 9781608408405Boswell, Larson
5,067 solutions

More related questions

1/4

1/7