Try the fastest way to create flashcards
Question

Answer the exercise given below.

{ Everyone that is at least 16 years old is eligible  for a driver’s license.  Mable is not eligible for a driver’s license.  Mable is not at least 16 years old. \begin{aligned} & \left\{\begin{array}{l} \text { Everyone that is at least } 16 \text { years old is eligible } \\ \text { for a driver's license. } \\ \text { Mable is not eligible for a driver's license. } \end{array}\right. \\ & \therefore \text { Mable is not at least 16 years old. } \end{aligned}

a. Is this a valid argument? Why or why not?

b. Is this conclusion true? In other words, is it the case that every person who is not eligible for a driver's license is under 16 years of age? Why or why not?

c. Is it possible to answer yes to Part a and no to Part b? Why or why not?

Solution

Verified
Answered 2 years ago
Answered 2 years ago
Step 1
1 of 4

a.To determine whether argument is valid, do the following:First, identify statements p and q:In this case prepresents the statement A person,x, is at least 16 years old.qrepresents the statement x is eligible for for a drivers license.Next, make the following observations:The second statement is a particular form of  not qThe third statement is a particular form of not p:Next, write the statements in the form of an argument:{If p then qqpObserve its structure is consistent with Law of Indrect Reasoning which shows the argument is valid.\begin{array}{ c l } \mathbf{a.} & \begin{array}{l} \mathrm{To\ determine\ whether\ argument\ is\ valid,\ do\ the\ following:}\\ \\ \mathbf{First,\ identify\ statements\ }\boldsymbol{p}\mathbf{\ and\ }\boldsymbol{q} :\\ \mathrm{In\ this\ case} \ \begin{array}{ c l } \boldsymbol{p} & \mathrm{represents} \ \mathrm{the\ statement} \ 'A\ \mathrm{person} ,x,\ \mathrm{is\ at\ least\ 16\ years\ old} '.\\ \boldsymbol{q} & \mathrm{represents} \ \mathrm{the\ statement} \ 'x\ \mathrm{is\ eligible\ for\ for\ a\ drivers\ license} '. \end{array}\\ \\ \mathbf{Next,\ make\ the\ following\ observations} :\\ \mathrm{The\ second\ statement\ is\ a\ particular\ form\ of} \ \ '\mathbf{not} \ \boldsymbol{q} '\\ \mathrm{The\ third\ statement\ is\ a\ particular\ form\ of} \ '\mathbf{not} \ \boldsymbol{p} ':\\ \\ \mathbf{Next,\ write\ the\ statements\ in\ the\ form\ of\ an\ argument:}\\ \mathrm{\begin{array}{ l } \begin{cases} \mathrm{If} \ \boldsymbol{p} \ \mathrm{then} \ \boldsymbol{q}\\ \boldsymbol{q} \end{cases}\\ \therefore \boldsymbol{p} \end{array}}\\ \\ \mathrm{Observe\ its\ structure\ is\ consistent\ with} \ \mathrm{Law\ of\ Indrect\ Reasoning\ which\ shows\ the\ argument\ is\ }\boxed{\mathrm{valid}} . \end{array} \end{array}

Create a free account to view solutions

Create a free account to view solutions

Recommended textbook solutions

Discrete Mathematics and Its Applications 7th Edition by Kenneth Rosen

Discrete Mathematics and Its Applications

7th EditionISBN: 9780073383095 (8 more)Kenneth Rosen
4,283 solutions
Precalculus and Discrete Mathematics 3rd Edition by Anthony L. Peressini, Mary Helen Wiltjer, Molly A. Rockstroh, Peter D. DeCraene, Steven S. Viktora, Ward E. Canfield, Zalman Usiskin

Precalculus and Discrete Mathematics

3rd EditionISBN: 9780076214211Anthony L. Peressini, Mary Helen Wiltjer, Molly A. Rockstroh, Peter D. DeCraene, Steven S. Viktora, Ward E. Canfield, Zalman Usiskin
3,203 solutions
Discrete Mathematics and Its Applications 8th Edition by Kenneth Rosen

Discrete Mathematics and Its Applications

8th EditionISBN: 9781259676512 (3 more)Kenneth Rosen
4,397 solutions
Discrete Mathematics with Applications 5th Edition by Susanna S. Epp

Discrete Mathematics with Applications

5th EditionISBN: 9781337694193Susanna S. Epp
2,641 solutions

More related questions

1/4

1/7