Try the fastest way to create flashcards
Question

Calculate.

0π/203sinθr2drdθ\int_0^{\pi / 2} \int_0^{3 \sin \theta} r^2 d r d \theta

Solution

Verified
Answered 2 years ago
Answered 2 years ago
Step 1
1 of 2

0π/203sinθr2drdθIntegrating with respect to r0π/2[r33]03sinθdθEvaluate, use The Fundamental Theorem of Integral Calculus0π/2[(3sinθ)33(0)22]dθ0π/29sin3θdθ90π/2sin2θsinθdθApply the pythagorean identity cos2x+sin2x=190π/2(1cos2θ)sinθdθ90π/2(sinθcos2θsinθ)dθIntegrate and evaluate90π/2(sinθcos2θsinθ)dθ=9[cosθ+cos3θ3]0π/29[θ+cos3θ2]0π/2=9[cos(π2)+cos3(π/2)3]9[cos(0)+cos303]Simplify9[θ+cos3θ2]0π/2=9[0+02]9[1+13]9[θ+cos3θ2]0π/2=6\begin{gathered} \int_0^{\pi /2} {\int_0^{3sin\theta } {{r^2}} drd\theta } \\ \textcolor{#4257b2}{ {\text{Integrating with respect to }}r} \\ \int_0^{\pi /2} {\left[ {\frac{{{r^3}}}{3}} \right]_0^{3\sin \theta }d} \theta \\ \textcolor{#4257b2}{{\text{Evaluate}}{\text{, use The Fundamental Theorem of Integral Calculus}}} \\ \int_0^{\pi /2} {\left[ {\frac{{{{\left( {3\sin \theta } \right)}^3}}}{3} - \frac{{{{\left( 0 \right)}^2}}}{2}} \right]d\theta } \\ \int_0^{\pi /2} {9{{\sin }^3}\theta d\theta } \\ 9\int_0^{\pi /2} {{{\sin }^2}\theta \sin \theta d\theta } \\ \textcolor{#4257b2}{ {\text{Apply the pythagorean identity }}{\cos ^2}x + {\sin ^2}x = 1} \\ 9\int_0^{\pi /2} {\left( {1 - {{\cos }^2}\theta } \right)\sin \theta d\theta } \\ 9\int_0^{\pi /2} {\left( {\sin \theta - {{\cos }^2}\theta \sin \theta } \right)d\theta } \\ \textcolor{#4257b2}{{\text{Integrate and evaluate}}} \\ 9\int_0^{\pi /2} {\left( {\sin \theta - {{\cos }^2}\theta \sin \theta } \right)d\theta } = 9\left[ { - \cos \theta + \frac{{{{\cos }^3}\theta }}{3}} \right]_0^{\pi /2} \\ 9\left[ {\theta + \frac{{{{\cos }^3}\theta }}{2}} \right]_0^{\pi /2} = 9\left[ { - \cos \left( {\frac{\pi }{2}} \right) + \frac{{{{\cos }^3}\left( {\pi /2} \right)}}{3}} \right] - 9\left[ { - \cos \left( 0 \right) + \frac{{{{\cos }^3}0}}{3}} \right] \\ \textcolor{#4257b2}{{\text{Simplify}}} \\ 9\left[ {\theta + \frac{{{{\cos }^3}\theta }}{2}} \right]_0^{\pi /2} = 9\left[ {0 + \frac{0}{2}} \right] - 9\left[ { - 1 + \frac{1}{3}} \right] \\ 9\left[ {\theta + \frac{{{{\cos }^3}\theta }}{2}} \right]_0^{\pi /2} = 6 \\ \end{gathered}

Create a free account to view solutions

Create a free account to view solutions

Recommended textbook solutions

Thomas' Calculus 14th Edition by Christopher E Heil, Joel R. Hass, Maurice D. Weir

Thomas' Calculus

14th EditionISBN: 9780134438986 (11 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir
10,142 solutions
Calculus: One and Several Variables 10th Edition by Einar Hille, Garret J. Etgen, Saturnino L. Salas

Calculus: One and Several Variables

10th EditionISBN: 9780471698043Einar Hille, Garret J. Etgen, Saturnino L. Salas
7,633 solutions
Calculus: Early Transcendentals 8th Edition by James Stewart

Calculus: Early Transcendentals

8th EditionISBN: 9781285741550 (6 more)James Stewart
11,085 solutions
Calculus: Early Transcendentals 9th Edition by Daniel K. Clegg, James Stewart, Saleem Watson

Calculus: Early Transcendentals

9th EditionISBN: 9781337613927 (1 more)Daniel K. Clegg, James Stewart, Saleem Watson
11,050 solutions

More related questions

1/4

1/7