Try Magic Notes and save time.Try it free
Try Magic Notes and save timeCrush your year with the magic of personalized studying.Try it free
Question

Calculate the double integral. double integral xsin(x+y)dA, R=[0, pi/6]x[0, pi/3]

Solutions

Verified
Answered 1 year ago
Step 1
1 of 2

Firstly, integrate with respect to y\text{Firstly, integrate with respect to y}.

0π/60π/3xsin(x+y)dydx=0π/6((xcos(x+π3))+xcosx)dx=0π/6(xcos(x+π3))dx+0π/6xcosxdx=[xsin(x+π3)+cos(x+π3)]x=0x=π/6+[xsinx+cosx]x=0x=π/6=π6sinπ2cosπ2+cosπ3+π6sinπ6+cosπ6cos0=π6+12+π12+321=π12+312\begin{aligned} &\int_{0}^{\pi/6} \int_{0}^{\pi/3} x\sin{(x+y)}dydx \\ &=\int_{0}^{\pi/6}\left( (-x\cos{(x+\frac{\pi}{3})})+x\cos{x}\right) dx \\ &=-\int_{0}^{\pi/6} (x\cos{(x+\frac{\pi}{3})})dx + \int_{0}^{\pi/6}x\cos{x} dx \\ &=- \biggl[ x\sin{\left(x+ \frac{\pi}{3}\right)}+\cos{\left( x+ \frac{\pi}{3}\right)}\biggr]_{x=0}^{x=\pi/6}+ \biggl[x\sin{x+\cos{x}} \biggr]_{x=0}^{x=\pi/6} \\ &=-\frac{\pi}{6}\sin{\frac{\pi}{2}}-\cos{\frac{\pi}{2}}+\cos{\frac{\pi}{3}}+\frac{\pi}{6}\sin{\frac{\pi}{6}}+\cos{\frac{\pi}{6}}-\cos{0} \\ &=-\frac{\pi}{6}+\frac{1}{2}+\frac{\pi}{12}+ \frac{\sqrt{3}}{2}-1 \\ &=-\frac{\pi}{12} + \frac{\sqrt{3}-1}{2} \end{aligned}

Create an account to view solutions

Create an account to view solutions

Recommended textbook solutions

Thomas' Calculus 14th Edition by Christopher E Heil, Joel R. Hass, Maurice D. Weir

Thomas' Calculus

14th EditionISBN: 9780134438986 (3 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir
10,144 solutions
Calculus: Early Transcendentals 7th Edition by James Stewart

Calculus: Early Transcendentals

7th EditionISBN: 9780538497909 (12 more)James Stewart
10,082 solutions
Calculus: Early Transcendentals 8th Edition by James Stewart

Calculus: Early Transcendentals

8th EditionISBN: 9781285741550 (3 more)James Stewart
11,085 solutions
Calculus: Early Transcendentals 9th Edition by Daniel K. Clegg, James Stewart, Saleem Watson

Calculus: Early Transcendentals

9th EditionISBN: 9781337613927 (3 more)Daniel K. Clegg, James Stewart, Saleem Watson
11,049 solutions

More related questions

1/4

1/7