Try Magic Notes and save time.Try it free
Try Magic Notes and save timeCrush your year with the magic of personalized studying.Try it free
Question

# Calculate the double integral. double integral xsin(x+y)dA, R=[0, pi/6]x[0, pi/3]

Solutions

Verified
Step 1
1 of 2

$\text{Firstly, integrate with respect to y}$.

\begin{aligned} &\int_{0}^{\pi/6} \int_{0}^{\pi/3} x\sin{(x+y)}dydx \\ &=\int_{0}^{\pi/6}\left( (-x\cos{(x+\frac{\pi}{3})})+x\cos{x}\right) dx \\ &=-\int_{0}^{\pi/6} (x\cos{(x+\frac{\pi}{3})})dx + \int_{0}^{\pi/6}x\cos{x} dx \\ &=- \biggl[ x\sin{\left(x+ \frac{\pi}{3}\right)}+\cos{\left( x+ \frac{\pi}{3}\right)}\biggr]_{x=0}^{x=\pi/6}+ \biggl[x\sin{x+\cos{x}} \biggr]_{x=0}^{x=\pi/6} \\ &=-\frac{\pi}{6}\sin{\frac{\pi}{2}}-\cos{\frac{\pi}{2}}+\cos{\frac{\pi}{3}}+\frac{\pi}{6}\sin{\frac{\pi}{6}}+\cos{\frac{\pi}{6}}-\cos{0} \\ &=-\frac{\pi}{6}+\frac{1}{2}+\frac{\pi}{12}+ \frac{\sqrt{3}}{2}-1 \\ &=-\frac{\pi}{12} + \frac{\sqrt{3}-1}{2} \end{aligned}

## Recommended textbook solutions #### Thomas' Calculus

14th EditionISBN: 9780134438986 (3 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir
10,144 solutions #### Calculus: Early Transcendentals

7th EditionISBN: 9780538497909 (12 more)James Stewart
10,082 solutions #### Calculus: Early Transcendentals

8th EditionISBN: 9781285741550 (3 more)James Stewart
11,085 solutions #### Calculus: Early Transcendentals

9th EditionISBN: 9781337613927 (3 more)Daniel K. Clegg, James Stewart, Saleem Watson
11,049 solutions