Try Magic Notes and save time.Try it free
Try Magic Notes and save timeCrush your year with the magic of personalized studying.Try it free
Question

Calculate the double integral. double integral xsin(x+y)dA, R=[0, pi/6]x[0, pi/3]

Solutions

Verified
Step 1
1 of 2

$\text{Firstly, integrate with respect to y}$.

\begin{aligned} &\int_{0}^{\pi/6} \int_{0}^{\pi/3} x\sin{(x+y)}dydx \\ &=\int_{0}^{\pi/6}\left( (-x\cos{(x+\frac{\pi}{3})})+x\cos{x}\right) dx \\ &=-\int_{0}^{\pi/6} (x\cos{(x+\frac{\pi}{3})})dx + \int_{0}^{\pi/6}x\cos{x} dx \\ &=- \biggl[ x\sin{\left(x+ \frac{\pi}{3}\right)}+\cos{\left( x+ \frac{\pi}{3}\right)}\biggr]_{x=0}^{x=\pi/6}+ \biggl[x\sin{x+\cos{x}} \biggr]_{x=0}^{x=\pi/6} \\ &=-\frac{\pi}{6}\sin{\frac{\pi}{2}}-\cos{\frac{\pi}{2}}+\cos{\frac{\pi}{3}}+\frac{\pi}{6}\sin{\frac{\pi}{6}}+\cos{\frac{\pi}{6}}-\cos{0} \\ &=-\frac{\pi}{6}+\frac{1}{2}+\frac{\pi}{12}+ \frac{\sqrt{3}}{2}-1 \\ &=-\frac{\pi}{12} + \frac{\sqrt{3}-1}{2} \end{aligned}

Recommended textbook solutions

Thomas' Calculus

14th EditionISBN: 9780134438986 (3 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir
10,144 solutions

Calculus: Early Transcendentals

7th EditionISBN: 9780538497909 (12 more)James Stewart
10,082 solutions

Calculus: Early Transcendentals

8th EditionISBN: 9781285741550 (3 more)James Stewart
11,085 solutions

Calculus: Early Transcendentals

9th EditionISBN: 9781337613927 (3 more)Daniel K. Clegg, James Stewart, Saleem Watson
11,049 solutions