## Related questions with answers

Carry out the following steps for the given functions f and points a. Find the linear approximation L to the function f at the point a.

$f ( x ) = e ^ { - x }$

, a=ln 2

Solution

Verified$\textbf{To find}$ linear approximation we will use the formula

$\color{#c34632}{L(x)=f(a)+f'(a)(x-a)}$

$\textbf{First thing}$ we will do is to find first derivative

$\begin{align*} f(x)&=e^{-x}\quad \Big/\frac{d}{dx}\\ f'(x)&=-e^{-x}\\ \end{align*}$

$\textbf{We have}$

$\begin{align*} f(\ln{2})&=e^{-\ln{2}}\tag{$a\ln{b}=\ln{b^a}$}\\ &=e^{\ln{2^{-1}}}\\ &=2^{-1}\\ &=\frac{1}{2}\\ \\ f'(\ln{2})&=-e^{-\ln{2}}\\ &=-e^{\ln{2^{-1}}}\\ &=-2^{-1}\\ &=-\frac{1}{2} \end{align*}$

$\textbf{Our approximation}$ becomes

$\begin{align*} L(x)&=\frac{1}{2}-\frac{1}{2}(x-\ln{2})\\ &=\frac{1}{2}-\frac{1}{2}x+\frac{\ln{2}}{2}\\ &=-\frac{1}{2}x+\frac{1}{2}+\frac{\ln{2}}{2}\\ \end{align*}$

$\textbf{Thus}$ our $\textbf{final solution}$ becomes

$\boxed{\color{#c34632}{L(x)=-\frac{1}{2}x+\frac{1}{2}+\frac{\ln{2}}{2}}}$

## Create a free account to view solutions

## Create a free account to view solutions

## Recommended textbook solutions

#### Thomas' Calculus

14th Edition•ISBN: 9780134438986 (11 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir#### Calculus: Early Transcendentals

3rd Edition•ISBN: 9780134763644 (5 more)Bernard Gillett, Eric Schulz, Lyle Cochran, William L. Briggs#### Calculus: Early Transcendentals

8th Edition•ISBN: 9781285741550 (6 more)James Stewart#### Calculus: Early Transcendentals

9th Edition•ISBN: 9781337613927 (3 more)Daniel K. Clegg, James Stewart, Saleem Watson## More related questions

1/4

1/7