## Related questions with answers

Question

Consider the function

$f ( x ) = - \frac { 1 } { 2 } x + 5$

Use composition to show that f(x) and the equation you wrote are inverses.

Solution

VerifiedStep 1

1 of 2for inverse

$\begin{align*} &f\left( f^{-1}\left( x\right)\right)=x\\ \\ &f\left( -2\cdot{x}+10\right)\\ \\ &=-\frac{1}{2}\left(-2\cdot{x}+10 \right)+5\\ \\ &=x-5+5\\ \\ &=x \end{align*}$

$\textbf{so, }$ $f^{-1}\left( x\right)$ $\textbf{ is the inverse of }$ $f\left( x\right)$

for inverse

$\begin{align*} &f^{-1}\left( f\left( x\right)\right)=x\\ \\ &f^{-1}\left( -\dfrac{1}{2}x+5\right)+10\\ \\ &=x-10+10\\ \\ &=x \end{align*}$

$\textbf{so, }$ $f^{-1}\left( x\right)$ $\textbf{ is the inverse of }$ $f\left( x\right)$

## Create a free account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy

## Create a free account to view solutions

By signing up, you accept Quizlet's Terms of Service and Privacy Policy

## Recommended textbook solutions

#### Algebra 2 Common Core

1st Edition•ISBN: 9780133186024 (1 more)Basia Hall, Charles, Kennedy7,537 solutions

#### Big Ideas Math Algebra 2: A Common Core Curriculum

1st Edition•ISBN: 9781608408405 (3 more)Boswell, Larson5,067 solutions

#### Big Ideas Math: Algebra 2 A Common Core Curriculum

1st Edition•ISBN: 9781642088052Laurie Boswell, Ron Larson5,067 solutions

## More related questions

1/4

1/7