Try the fastest way to create flashcards
Question

Consider the function f(x, y) = 4xy / x²+y², (x, y) ≠ (0, 0) {0, (x, y) = (0, 0) and the unit vector u = 1/√2 (i + j). Does the directional derivative of f at P(0, 0) in the direction of u exist? If f(0, 0) were defined as 2 instead of 0, would the directional derivative exist?

Solutions

Verified
Answered 9 months ago
Step 1
1 of 4

We can use the definition of the directional derivative for this exercise.:

Duf(x,y)=limt0f(x+tcosθ,y+tsinθ)f(x,y)tD_{\bold u} f(x,y) = \lim\limits_{ t \to 0 } \dfrac{ f(x+t \cos \theta, y + t \sin \theta) - f(x,y) }{ t}

The unit vector u=12(i+j)\bold u = \dfrac{ 1}{\sqrt 2 }(\bold i + \bold j) points in the direction of:

θ=arctan11=π4\theta = \arctan \dfrac{ 1}{1 } = \frac{\pi}{4}

Create a free account to view solutions

Create a free account to view solutions

Recommended textbook solutions

Thomas' Calculus 14th Edition by Christopher E Heil, Joel R. Hass, Maurice D. Weir

Thomas' Calculus

14th EditionISBN: 9780134438986 (11 more)Christopher E Heil, Joel R. Hass, Maurice D. Weir
10,142 solutions
Calculus 10th Edition by Bruce H. Edwards, Ron Larson

Calculus

10th EditionISBN: 9781285057095 (3 more)Bruce H. Edwards, Ron Larson
12,387 solutions
Calculus: Early Transcendentals 8th Edition by James Stewart

Calculus: Early Transcendentals

8th EditionISBN: 9781285741550 (6 more)James Stewart
11,081 solutions
Calculus: Early Transcendentals 9th Edition by Daniel K. Clegg, James Stewart, Saleem Watson

Calculus: Early Transcendentals

9th EditionISBN: 9781337613927 (3 more)Daniel K. Clegg, James Stewart, Saleem Watson
11,050 solutions

More related questions

1/4

1/7