Question

# Consider the vector field F=$\langle a x + b y , c x + d y \rangle$. Show that F has zero circulation on any oriented circle centered at the origin, for any a, b, c, and d, provides b=c.

Solution

Verified
Step 1
1 of 2

The force field is

$F(x,y)=(ax+by,cx+dy).$

The curve is

$r(t)=(\alpha \cos t,\alpha \sin t),\ \forall t \in [0,2\pi ]\Rightarrow r'(t)=(-\alpha \sin t,\alpha \cos t).$

Thus, the integral is

\begin{align*}\int _C F\cdot Tds&=\int _0^{2\pi }F(r(t))r'(t)dt\\&=\int _0^{2\pi }(a\alpha \cos t+b\alpha \sin t, c\alpha \cos t+d\alpha \sin t)\cdot (-\alpha \sin t,\alpha \cos t)dt\\&=\alpha ^2\int _0^{2\pi}(-b\sin ^2t+(-a+d)\sin t\cos t+c\cos ^2t)dt\\&=\alpha ^2\left (\dfrac{-bt+b\sin t\cos t}{2}+\dfrac{a-d}{4}\cdot \cos (2t)+\dfrac{ct+c\sin t\cos t}{2}\right )\Big |_0^{2\pi }\\&=\alpha ^2\pi (-b+c).\end{align*}

Provided $b=c$, this result equals $0$.

## Recommended textbook solutions #### Biology

1st EditionISBN: 9780132013499 (4 more)Kenneth R. Miller, Levine
2,470 solutions #### Calculus: Early Transcendentals

3rd EditionISBN: 9780134763644 (2 more)Bernard Gillett, Eric Schulz, Lyle Cochran, William L. Briggs
13,383 solutions #### Nelson Science Perspectives 10

1st EditionISBN: 9780176355289Christy C. Hayhoe, Doug Hayhoe, Jeff Major, Maurice DiGiuseppe
1,359 solutions #### Miller and Levine Biology

1st EditionISBN: 9780328925124 (2 more)Joseph S. Levine, Kenneth R. Miller
1,773 solutions