Try the fastest way to create flashcards
Question

Define a sequence {gn}\{g_n\} as g1=c1g_1=c_1 and g2=c2g_2=c_2 for constants c1c_1 and c2c_2, and gn=gn1+fn2g_n=g_{n-1}+f_{n-2} for n3n\geq 3. Prove that gn=g1fn2+g2fn1g_n=g_1f_{n-2}+g_2f_{n-1} for all n3n\geq 3.

Solution

Verified
Step 1
1 of 3

Fibonacci sequence\textbf{Fibonacci sequence}: the list of integers fnf_n where f1=1f_1=1, f2=1f_2=1, fn=fn1+fn2f_n=f_{n-1}+f_{n-2} for n3n\geq 3.

Given:

g1=c1g_1=c_1

g2=c2g_2=c_2

gn=gn1+gn2g_n=g_{n-1}+g_{n-2} for n3n\geq 3

To proof: gn=g1fn2+g2fn1g_n=g_1f_{n-2}+g_2f_{n-1} for all n3n\geq 3 .

PROOF BY STRONG INDUCTION\textbf{PROOF BY STRONG INDUCTION}

Let P(n)P(n) be the statement "gn=g1fn2+g2fn1g_n=g_1f_{n-2}+g_2f_{n-1}".

Basis step\textbf{Basis step} n=3n=3 and n=4n=4

g3=g2+g1=g1(1)+g2(1)=g1f1+g2f2g4=g3+g2=g2+g1+g2=g1(1)+g2(2)=g1f2+g2f3\begin{align*} g_3&=g_2+g_1=g_1(1)+g_2(1)=g_1f_1+g_2f_2 \\ g_4&=g_3+g_2=g_2+g_1+g_2=g_1(1)+g_2(2)=g_1f_2+g_2f_3 \end{align*}

Thus P(3)P(3) and P(4)P(4) are true.

Inductive step\textbf{Inductive step} Let P(3),P(4),....,P(k)P(3),P(4),....,P(k) be true.

gi=g1fi2+g2fi1 for i=1,2,...,kg_i=g_1f_{i-2}+g_2f_{i-1}\text{ for }i=1,2,...,k

We need to proof that P(k+1)P(k+1) is true.

Create a free account to view solutions

Create a free account to view solutions

Recommended textbook solutions

Discrete Mathematics and Its Applications 7th Edition by Kenneth Rosen

Discrete Mathematics and Its Applications

7th EditionISBN: 9780073383095 (8 more)Kenneth Rosen
4,283 solutions
Discrete Mathematics 8th Edition by Richard Johnsonbaugh

Discrete Mathematics

8th EditionISBN: 9780321964687Richard Johnsonbaugh
4,246 solutions
Discrete Mathematics and Its Applications 8th Edition by Kenneth Rosen

Discrete Mathematics and Its Applications

8th EditionISBN: 9781259676512 (3 more)Kenneth Rosen
4,397 solutions
Discrete Mathematics with Applications 5th Edition by Susanna S. Epp

Discrete Mathematics with Applications

5th EditionISBN: 9781337694193 (2 more)Susanna S. Epp
2,641 solutions

More related questions

1/4

1/7