Try the fastest way to create flashcards
Question

Define J(m,n)J(m, n), for non-negative integers mm and nn, by the integral

J(m,n)=0π/2cosmθsinnθdθ.J(m, n)=\int_0^{\pi / 2} \cos ^m \theta \sin ^n \theta d \theta .

(a) Evaluate J(0,0),J(0,1),J(1,0),J(1,1),J(m,1),J(1,n)J(0,0), J(0,1), J(1,0), J(1,1), J(m, 1), J(1, n). (b) Using integration by parts, prove that, for mm and nn both >1>1,

J(m,n)=m1m+nJ(m2,n) and J(m,n)=n1m+nJ(m,n2).J(m, n)=\frac{m-1}{m+n} J(m-2, n) \text { and } J(m, n)=\frac{n-1}{m+n} J(m, n-2) .

(c) Evaluate (i) J(5,3)J(5,3), (ii) J(6,5)J(6,5) and (iii) J(4,8)J(4,8).

Solution

Verified
Answered 2 years ago
Answered 2 years ago
Step 1
1 of 6

Given:J(m,n)=0π2cosmθsinnθdθ\textbf{Given}: J\left(m,n \right)=\int _{0}^{\frac{\pi}{2}} \cos^{m}\theta \sin^{n}\theta d\theta

(a):Put al the values in above equation\textbf{(a):} \text{Put al the values in above equation}

J(0,0)=0π2cos0θsin0θdθ=0π21dθ=[θ]0π2=(π20)=π2J(0,1)=0π2cos0θsin1θdθ=0π2sinθdθ=[cosθ]0π2=(cosπ2cos0)=(01)=1J(1,0)=0π2cos1θsin0θdθ=0π2cosθdθ=[sinθ]0π2=(sinπ2sin0)=(10)=1\begin{align*} &J\left(0,0 \right)= \int _{0}^{\frac{\pi}{2}} \cos^{0}\theta \sin^{0}\theta d\theta \\ &=\int _{0}^{\frac{\pi}{2}} 1d\theta \\ &=\left[\theta \right]_{0}^{\frac{\pi}{2}}\\ &=\left(\dfrac{\pi}{2}-0 \right)\\ &=\dfrac{\pi}{2}\\ &J\left(0,1 \right)= \int _{0}^{\frac{\pi}{2}} \cos^{0}\theta \sin^{1}\theta d\theta \\ &=\int _{0}^{\frac{\pi}{2}} \sin\theta d\theta \\ &=\left[-\cos\theta \right]_{0}^{\frac{\pi}{2}}\\ &=-\left(\cos\dfrac{\pi}{2}-\cos0 \right)\\ &=-\left(0-1 \right)\\ &=1\\ &J\left(1,0 \right)= \int _{0}^{\frac{\pi}{2}} \cos^{1}\theta \sin^{0}\theta d\theta \\ &=\int _{0}^{\frac{\pi}{2}} \cos\theta d\theta \\ &=\left[\sin\theta \right]_{0}^{\frac{\pi}{2}}\\ &=\left(\sin\dfrac{\pi}{2}-\sin0 \right)\\ &=\left(1-0 \right)\\ &=1\\ \end{align*}

Create a free account to view solutions

Create a free account to view solutions

Recommended textbook solutions

Physics for Scientists and Engineers: A Strategic Approach with Modern Physics 4th Edition by Randall D. Knight

Physics for Scientists and Engineers: A Strategic Approach with Modern Physics

4th EditionISBN: 9780133942651 (8 more)Randall D. Knight
3,508 solutions
Mathematical Methods in the Physical Sciences 3rd Edition by Mary L. Boas

Mathematical Methods in the Physical Sciences

3rd EditionISBN: 9780471198260 (1 more)Mary L. Boas
3,355 solutions
Mathematical Methods for Physics and Engineering: A Comprehensive Guide 3rd Edition by K. F. Riley, M. P. Hobson, S. J. Bence

Mathematical Methods for Physics and Engineering: A Comprehensive Guide

3rd EditionISBN: 9780521679718K. F. Riley, M. P. Hobson, S. J. Bence
744 solutions
Fundamentals of Physics 10th Edition by David Halliday, Jearl Walker, Robert Resnick

Fundamentals of Physics

10th EditionISBN: 9781118230718 (3 more)David Halliday, Jearl Walker, Robert Resnick
8,971 solutions

More related questions

1/4

1/7