In each case, assume that T is a linear transformation. (a) If
T:V→R
and
T(v1)=1,T(v2)=−1
, find
T(3v1−5v2)
. (b) If
T:V→R
and
T(v1)=2,T(v2)=−3
, find
T(3v1+2v2)
. (c) If
T:R2→R2
and
T[13]=[11],T[11]=[01]
, and
T[−13]
. (d) If
T:R2→R2
and
T[1−1]=[01],T[11]=[10]
, find
T[1−7]
. (e) If
T:P2→P2
and T(x+1)=x,
T(x−1)=1,T(x2)=0
, find T(2+3x-
x2
). (f) If
T:P2→R
and T(x+2)=1, T(1)=5,
T(x2+x)=0
, find T(2-x+
3x2
).