Try the fastest way to create flashcards
Question

Δ\Delta denotes the symmetric difference operator defined as AΔB=(AB)(AB)A\Delta B=(A\cup B)-(A\cap B), where A and B are sets. Is Δ\Delta commutative? If so, prove it; otherwise, give a counterexample.

Solution

Verified
Step 1
1 of 3

DEFINITIONS

XX is a subset\textbf{subset} of YY if every element of XX is also an element of YY.

Notation: XYX\subseteq Y

Symmetric difference AΔB\textbf{Symmetric difference }A\Delta B: All elements in AA or in BB, but not in both.

Commutative laws:\textbf{Commutative laws:} AB=BAA\cup B=B\cup A and AB=BAA\cap B=B\cap A

jmeitj mrjqetmj rejt mret eirtm erjot ejirtjo jeroitjo erjotj rejit joretio erotj oerjtije tjreioj\text{\color{white}jmeitj mrjqetmj rejt mret eirtm erjot ejirtjo jeroitjo erjotj rejit joretio erotj oerjtije tjreioj}

Create a free account to view solutions

Create a free account to view solutions

Recommended textbook solutions

Discrete Mathematics and Its Applications 7th Edition by Kenneth Rosen

Discrete Mathematics and Its Applications

7th EditionISBN: 9780073383095 (8 more)Kenneth Rosen
4,283 solutions
Discrete Mathematics 8th Edition by Richard Johnsonbaugh

Discrete Mathematics

8th EditionISBN: 9780321964687Richard Johnsonbaugh
4,246 solutions
Discrete Mathematics and Its Applications 8th Edition by Kenneth Rosen

Discrete Mathematics and Its Applications

8th EditionISBN: 9781259676512 (3 more)Kenneth Rosen
4,397 solutions
Discrete Mathematics with Applications 5th Edition by Susanna S. Epp

Discrete Mathematics with Applications

5th EditionISBN: 9781337694193Susanna S. Epp
2,641 solutions

More related questions

1/4

1/7